
[수상]반도체 분야 세계적인 국제학술대회 DesignCon에서 최우수논문상 수상자 4명 동시 배출
< (왼쪽부터) 전기및전자공학부 김성국, 최성욱, 신태인, 김혜연 박사과정 >반도체 설계 분야에서 세계적으로 권위를 인정받고 있는 국제학술대회인 디자인콘(DesignCon)에서 최우수 논문상 수상자 4명을 우리 대학 한 연구실에서 동시 배출해 화제다. 전체 수상자 8명 중 절반인 4명을 배출한 것도 대단한 성과인데 인텔(Intel)·마이크론(Micron)·AMD·화웨이(Hwawei)와 같이 반도체 강국으로 꼽히는 미국·중국·일본의 글로벌 빅테크 기업 소속 엔지니어 및 연구원들과 당당히 경쟁해서 따낸 것이기에 이들의 수상이 더욱 의미가 크고 값지다는 평가다. 전 세계 기업과 대학 연구실 가운데 최초이면서도 유일하게 인공지능(AI) 스스로 최적의 설계를 구현하는 강화학습(RL)을 포함한 머신러닝(ML) 기술과 3D 이종반도체 패키징(3D Heterogeneous Packaging) 기술을 결합하여 슈퍼 컴퓨터·초대형 데이터센터의 고성능 서버 등에 핵심적으로 사용되는 HBM(고대역폭 메모리) 등 차세대 인공지능(AI) 반도체를 연구하는 전기및전자공학부 김정호 교수 연구실 테라 랩(Terabyte Interconncection and Package Laboratory) 소속 박사과정 학생들의 이야기다. 이들의 연구는 인공지능이 중심이 되는 디지털 전환과 동시에 이를 가능하게 하는 인공지능 반도체와 컴퓨터의 발전을 선도하고 있다. 더 나아가 설계 과정 전체를 인공지능으로 자동화하려는 미래 방향을 제시하고 있다. 전기및전자공학부 테라 랩 소속 김성국(사진·31세)·최성욱(사진·27세)·신태인(사진·26세)·김혜연(사진·26세) 박사과정 학생 4명이 국제학회인 디자인콘(DesignCon)이 선정한 2022년 최우수 논문상 수상자로 선정됐다고 16일 밝혔다. 시상식은 오는 31일 미국 실리콘밸리 산호세 산타클라라 컨벤션센터에서 열리는 `디자인콘 2023 국제학술대회'에서 열린다. 이들 대학원 학생 4명이 수상하는 최우수 논문상은 반도체 및 패키지 설계 분야에서 국제적으로 권위를 인정받고 있는 디자인콘이 인텔·마이크론·램버스·텍사스인스트루먼트(TI)·AMD·화웨이·IBM·앤시스(ANSYS) 등 글로벌 빅테크 기업의 연구원과 엔지니어, 그리고 세계 각 대학 대학(원)생을 대상으로 매년 7월 말 논문 초안을, 12월 말까지 전체 논문을 각각 모집하고 제출받아 심사를 거쳐 수여하는 학술대회 최고상이다. 이 때문에 발표되는 논문은 실무와 매우 밀접한 관련이 있고 곧바로 제품에 적용이 가능한 실용적인 기술에 관한 내용이 대부분이다. 2022년에는 총 8명의 수상자를 선정했는데 김정호 교수가 지도하는 KAIST 테라 랩에서만 수상자의 절반인 4명을 배출했다. 수상작 가운데 2편은 인공지능을 이용한 반도체 설계, 나머지 2편은 인공지능 컴퓨팅을 위한 반도체 구조 설계에 관한 논문이다. 우선 최우수 논문상 수상자 중 김성국 학생(31세)은 고성능 인공지능 가속기를 위한 고대역폭 메모리 기반 프로세싱-인-메모리(PIM) 아키텍처를 설계했다. 최성욱 학생(27세)은 강화학습 방법론을 활용해 고대역폭(HBM) 메모리를 위한 하이브리드 이퀄라이저를 설계해 주목을 받았다. 신태인 학생(26세)은 차세대 뉴로모픽 컴퓨팅 시스템의 신호 무결성 모델링과 설계 및 분석 방법론을 제안했다. 마지막으로 김혜연 학생은 반도체 설계 문제 중 디커플링 캐패시터 배치 문제를 조합 최적화 문제로 정의하고 오프라인 학습 방법인 모방 학습을 통해 자동 최적화했다. 김혜연 학생은 이번 수상 논문 이외에도 반도체 설계 문제에 지식 증류·데이터 증강·대칭성 학습 등 다양한 인공지능 기법을 적용, 한층 성능이 개선된 결과를 얻어 관련 산업계로부터 많은 주목을 받고 있다. 특히 김혜연 학생의 연구는 기존 인공지능을 적용한 연구에서 한 발 더 나가 반도체 설계 문제의 특징을 고려한 학습 방법과 신경 구조를 직접 설계한 연구로 평가받아 2022년 초 열린 인공지능 분야 최대학회인 뉴립스(NeurIPS) 워크숍에서 발표된 적이 있다. 우리 대학 테라 랩은 2022년 4명의 수상자 외에 지난 2021년에도 김민수 박사과정 학생이 최우수 논문상을 수상했다. 불과 2년 사이에 디자인콘이 주관하는 학술대회의 꽃인 최우수 논문상 수상자를 모두 5명을 배출했는데 5편의 수상자 논문 중 3편이 인공지능을 활용한 반도체 설계에 관한 논문이다. 반도체 설계는 고성능·저전력을 목적으로 미세한 3차원 패키지에 다양한 기능을 갖춘 수많은 부품을 최적화해 배치할 뿐만 아니라 검증을 위해서는 복잡한 시뮬레이션이 필요하기 때문에 매우 어려운 분야로 꼽힌다. 김정호 교수가 이끄는 테라 랩에는 올 1월 현재 석사과정 10명, 박사과정 13명 등 모두 23명의 학생이 반도체 전·후공정에 들어가는 다양한 패키지와 인터커넥션 설계를 강화·모방 학습과 같은 인공지능(AI) 머신러닝(ML)을 활용해 최적화하는 연구를 수행 중이다. 김정호 교수는 "테라 랩은 전 세계 산·학·연구기관 중 유일하게 그간의 연구성과를 기반으로 독창적으로 개발한 반도체 설계 자동화 기술인 5I(CI, PI, TI, EMI, AI) 융합 솔루션을 갖추고 있다ˮ면서 "2030년 이후에는 이종 칩(Chip)을 하나의 패키지로 통합하는 `3D 이종 집적화(Heterogeneous Integration) 패키징' 기술이 대세로 자리를 잡을 것ˮ이라고 전망했다. 김 교수는 이어 "디지털 대전환(DX) 시대를 맞아 반도체의 역할이 갈수록 중요해지는 만큼 차세대 반도체 개발에 필요한 맞춤형 인재 양성을 위해 더욱 노력하겠다ˮ고 소감을 밝혔다.

[정책]학문의 대를 잇는 초세대 협업연구실 추가 개소
< (왼쪽) 유기반응 및 합성연구실 박윤수, 장석복, 한순규 교수 (오른쪽) KAIST 시스템 반도체 패키징 연구실 안승영, 김경민, 김정호 교수 >우리 대학이 '초세대 협업연구실'을 추가 개소하고 11일 오전 현판식을 개최했다. '초세대 협업연구실'은 은퇴를 앞둔 교수가 오랜 시간 축적해온 학문의 성과와 노하우를 이어가기 위해 후배 교수와 협업하는 KAIST의 독자적인 연구제도다.2018년 초세대 협업연구실 제도를 처음 도입한 이후 7개의 연구실을 선정했으며, 작년 말 전기및전자공학부 김정호 교수의 'KAIST 시스템반도체 패키징 연구실'과 화학과 장석복 교수의 '유기반응 및 합성연구실'을 추가로 선정했다.김정호 교수가 책임교수를 맡은 'KAIST 시스템반도체 패키징 연구실'에는 조천식모빌리티대학원 안승영 교수와 신소재공학과 김경민 교수가 참여교수로 협업한다. 김정호 책임교수는 고성능 반도체 설계 및 인공지능 공학 설계(AI-X) 분야의 대표적인 석학으로 전 세계적으로 독창성을 인정받는 5I* 융합설계 원천기술을 유일하게 보유하고 있다. ☞ 5I 기술: 신호선 설계(SI, Signal Integrity), 전력선 설계(PI, Power Integrity), 기계 및 열 설계(TI, Thermal Integrity), 전자파 설계(EMI, Electromagnetic Interference Integrity), 구조 설계(AI, Architect Integrity) 등 시스템반도체 패키징 분야의 융합 설계기술안승영 참여교수는 자율주행 자동차, 드론, 위성, 국방, 초소형 의료기기 등 다양한 시스템에 적용되는 초고속 반도체 집적회로 패키징과 시스템의 전자파 간섭 및 전자파 적합성에 관한 연구를 수행해왔다. 김경민 참여교수는 자연과학, 재료공학, 전자공학을 기반으로 인간의 신체를 모방한 시스템반도체용 저항성 메모리(Memristor) 연구 분야에서 경력을 쌓았으며, 최근에는 인공지능 반도체 소자 패키지 분야를 중점적으로 연구하고 있다. 이들은 세대 간의 연구 협력을 통해 '시스템반도체 패키징' 기술을 심화·발전시켜 나갈 예정이다. 이를 기초로 국내 시스템반도체 산업 경쟁력을 한 단계 높이는 것이 목표다. '시스템반도체 패키징'은 그동안 분리해 사용돼 온 프로세서와 메모리를 하나의 반도체 안에 3차원적으로 집적하는 기술이다. 인공지능의 학습 계산 능력을 현저하게 높이고 동시에 전력 소모는 줄이는 첨단 기술이다. 기존 '반도체 무어의 법칙'을 이어가는 초격차 기술이자 미래 인공지능 시대를 가능케 하는 기술이다. 특히, 김정호 교수가 주도하는 초세대 협업연구실은 이 분야 세계 최고의 연구실로 꼽히고 있다.3차원 집적 패키징 기술은 슈퍼컴퓨터와 초대형 데이터 센터의 고성능 서버, 자율주행 자동차 등에 사용되는 차세대 인공지능 반도체의 핵심 기술로 각종 인공지능 서비스와 메타버스와 같은 고부가가치 플랫폼을 구현하기 위해서는 반드시 확보해야 하는 경쟁력 중 하나다. 3차원 고성능 이종집적 패키징(3D High Performance Heterogeneous Computing Packaging) 원천기술을 바탕으로 고성능·저전력·다기능 시스템을 구현하고, 특히 이 전체 설계 과정을 인공지능 기계학습 방법으로 자동화할 계획이다. 미국 전자공학회 석학회원(IEEE 펠로우)인 김정호 교수는 KAIST 전기및전자공학부 교수 중에는 최초로 초세대 협업연구실을 개소하는 영예를 얻게 됐다. 또 다른 초세대 협업연구실로 선정된 '유기반응 및 합성연구실'은 장석복 화학과 교수가 책임교수를 맡고 같은 학과의 한순규, 박윤수 교수가 참여한다. 전이금속 촉매를 이용한 합성 방법 개발 분야의 세계적 권위자인 장석복 교수는 2015년부터 8년 연속으로 세계에서 가장 영향력 있는 연구자(Highly Cited Researcher)에 선정됐으며, 2012년부터 기초과학연구원 (IBS) '분자활성 촉매반응 연구단'을 이끌며 리더십을 발휘하고 있다.한순규 참여교수는 복잡한 구조와 다양한 생리활성을 가지는 천연물 화학합성 분야의 전문가다. 특히, 한 교수 연구실은 세큐리네가 알칼로이드* 합성 분야에서 세계 학계를 이끌어가는 선두그룹으로 평가받고 있다.☞ 세큐리네가 알칼로이드: 한국에서도 자생하는 식물인 '광대싸리' 내에서 생합성되는 질소 함유 알칼리성 유기물질 박윤수 참여교수는 유기화학과 무기화학 두 분야를 모두 전공했으며, 물리유기 및 금속화학 분야의 촉망받는 신진 연구자다.이들은 초세대 협업연구실을 통해 유기 반응 및 합성 연구 분야에서 세 가지 중심 주제 꼽히는 ▴합성 방법론 개발 ▴반응 메커니즘의 분석 및 이해 ▴천연물 전합성에의 응용에 관한 연구를 수행한다. 새로운 화학반응 및 촉매개발이라는 비전 아래 속도가 빠르고 선택적이면서도 화학 폐기물의 발생을 최소화하는 지속가능한 합성법을 개발하고 이를 신약 개발을 위한 천연물 합성 및 기능성 유기분자의 생산 공정에 적용하는 것이 연구 방향이다.유기화학 전반에 대한 장석복 교수의 높은 통찰과 오랜 시간 구축해온 중요 실험 장비를 적극적으로 활용하면서 박윤수 교수가 보유한 물리유기화학적 실험 기법들을 적용해 새로운 화학 반응을 개발한 뒤, 이를 한순규 교수가 실제 천연물 합성 조건에 적용해 증명하는 방식으로 협업을 진행할 예정이다.장 교수 연구팀의 초세대 협업연구실은 무작위 스크리닝과 시행착오를 통한 인력투입형 유기화학반응 개발의 기존 패러다임에서 벗어나, 심화된 메커니즘을 연구해 반응성에 대한 깊은 이해를 바탕으로 촉매시스템을 설계하는 접근법을 계획하고 있다. 이를 통해, 궁극적으로 의약·재료·화학·바이오 산업 전반에 파급력 있는 반응방법 및 혁신적인 전합성을 개척하는 것이 목표다. 우리 대학은 세대를 이어 지속가능한 연구혁신을 추구할 연구실을 발굴하기 위해 2022년 9월부터 BFO추천위원회(The Best, the First, the Only)의 추천과 공개 공모 절차를 거쳐 초세대 협업연구실을 선발해왔다. ▴연구의 독창성·차별성·탁월성 ▴학술·사회·경제적 효과 ▴초세대 연구의 필요성 ▴책임교수의 학문적 우수성 및 국제적 인지도 ▴참여교수의 비전 및 연구계획 등의 기준을 바탕으로 새롭게 선정된 두 연구실에는 향후 5년간 총 5억 원의 운영비가 지원된다.2018년 첫 초세대 협업연구실로 선정된 이상엽 교수 연구팀의 '시스템 대사공학 및 시스템 헬스케어 연구실'에서는 딸기우유 같은 식품이나 화장품 등에 활용되는 붉은색 천연색소인 카르민산을 미생물을 이용해 생산하는 기술을 2021년 개발했다. 한정된 지역에서만 서식하는 ‘연지벌레’에서 복잡하고 비효율적인 단계를 거쳐 추출해야 하는 기존의 방법에 대해 혁신적이고 효과적인 해결책을 제시한 성과다. 또한, 2019년 선정된 이용희 물리학과 교수 연구팀의 '나노포토닉스 연구실'은 서민교 참여교수의 주도로 자기장에 의해 자발적으로 생성되고 동역학적 움직임을 보이는 빛 소용돌이(optical vortex)를 구현하는 연구를 최초로 시도해 성공했다. 그 과학적 가치를 인정받아 지난해 10월 국제 학술지 '네이처(Nature)' 온라인 판본으로 출판하는 등 기존에 선정된 초세대 협업 연구실에서는 세대를 잇는 협업의 성과를 꾸준하게 배출하고 있다.신규 선정된 '유기반응 및 합성연구실' 책임을 맡은 장석복 교수는 "다양한 시행착오를 거치며 일군 연구실 시스템을 후속 세대가 디딤돌로 삼을 수 있으면 좋겠다는 생각이 있었는데, 이번에 설립되는 초세대 협업연구실을 통해 유기합성 분야의 중요하고 파급력 있는 문제를 창의적으로 풀어나가기를 희망한다"라고 소감을 전했다.'KAIST 시스템반도체 패키징 연구실'의 김정호 책임교수는 "우리나라가 진정한 반도체 강국으로 자리 잡기 위해 꼭 필요한 시스템반도체 패키징 분야에 특화된 연구를 실현해 국내 반도체 산업의 초격차 경쟁력 제고에도 힘을 보탤 것"이라고 말했다. 한편, 11일 오전에 열린 초세대 협업연구실 현판식에는 이상엽 연구부총장, 김경수 기획처장, 조광현 연구처장, 이동만 공과대학장 등 주요 보직자들과 새롭게 선정된 연구실 관계자들이 참석했다.

[연구]폐암 전이를 막고 치료 가능한 세포로 되돌리는 원천기술 개발
< (왼쪽부터) 바이오및뇌공학과 조광현 교수, 김남희 박사과정, 황채영 박사 >고령화에 따라 암의 발생이 늘어나면서 암은 인류의 건강수명을 위협하는 가장 치명적인 질환이 됐다. 특히 조기 발견을 놓쳐 여러 장기로 전이될 때 암의 치명률은 높아진다. 이러한 문제를 해결하기 위해 암세포의 전이 능력을 제거하거나 낮추려는 시도가 이어졌으나 오히려 중간상태의 불안정한 암세포 상태가 되면서 더욱 악성을 보이게 되어 암 치료의 난제로 남아 있었다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 폐암 세포의 성질을 변환시켜 암세포의 전이를 막고 약물에 대한 저항성을 제거할 수 있는 기술을 개발하는 데 성공했다고 30일 밝혔다. 조광현 교수 연구팀은 폐암 세포의 전이능력이 없는 상피(epithelial, 세포 방향성이 있어 유동성 없이 표면조직을 이루는 상태)세포에서 전이가 가능한 중간엽(mesenchymal, 방향성없이 개별적인 이동성을 가진 상태)세포로 변화되는 천이 과정(epithelial-to-mesenchymal transition, 이하 EMT)에서 나타나는 다양한 암세포 상태들을 나타낼 수 있는 세포의 분자 네트워크 수학모델을 만들었다. 컴퓨터 시뮬레이션 분석과 분자 세포실험을 통해 악성종양으로 증식하여 인접한 조직이나 세포로 침입하거나 약물에 내성을 가진 중간엽세포 상태에서 전이가 되지 않은 상피세포 상태로 다시 바뀔수 있도록 세포의 성질을 변환시켜주는 핵심 조절인자들을 발굴했다. 특히 이 과정에서 그동안 난제로 남아 있었던 중간과정의 불안정한 암세포 상태(EMT 하이브리드 세포 상태)를 피하는 동시에 항암 화학요법(chemotherapy) 치료가 잘 되는 상피세포 상태로 온전히 역전하는 데 성공했다.< 그림 1. EMT와 관련된 다양한 분자간의 상호작용을 바탕으로 EMT 표현형을 재현할 수 있는 유전자 조절 네트워크 모델 구축 >우리 대학 김남희 박사과정, 황채영 박사, 김태영 연구원, 김현진 박사과정이 참여한 이번 연구 결과는 미국암학회(AACR)에서 출간하는 국제저널 `캔서 리서치(Cancer Research)' 1월 30일 字 온라인판 논문으로 출판됐다. (논문명: A cell fate reprogramming strategy reverses epithelial-to-mesenchymal transition of lung cancer cells while avoiding hybrid states) 암세포의 EMT 과정에서 불완전한 천이(변화과정)로 인해 발생하는 EMT 하이브리드 상태의 세포들은 상피세포와 중간엽세포의 특성을 모두 갖고 있으며, 높은 줄기세포능*을 획득해 약물저항성 및 전이 잠재성이 큰 것으로 알려져 있다. 불안정한 암세포 상태(EMT)는 매우 복잡하여 높은 전이 능력과 약물저항성을 가지는 EMT 하이브리드 세포 상태를 회피하면서 암세포를 전이 능력과 약물저항성이 제거된 상피세포 상태로 온전히 역전시키는 것은 매우 어려운 일이었다.*줄기세포능: 줄기세포가 지속적 자가복제를 할 수 있도록 하는 세포내 신호전달체계 조광현 교수 연구팀은 복잡한 EMT를 지배하는 유전자 조절 네트워크의 수학모델을 정립한 후, 대규모 컴퓨터 시뮬레이션 분석 및 복잡계 네트워크 제어기술을 적용해 중간엽세포 상태인 폐암 세포를 EMT 하이브리드 세포 상태를 회피하면서 전이 능력이 상실된 상피세포 상태로 역전시킬 수 있는 세 개의 핵심 분자 타깃인 ‘p53 (암 억제 단백질)’, ‘SMAD4 (EMT를 조절하는 대표적 신호전달을 매개하는 중심물질로 SMAD 그룹에 포함된 단백질)’와 ‘ERK1/2 (세포의 성장 및 분화에 관여하는 조절인자)’를 발굴하고 이를 분자 세포실험을 통해 검증했다. 이러한 발견은 실제 인체 내 암 조직의 환경에서처럼 자극이 주어진 상황에서 중간엽세포 상태가 상피세포 상태로 역전될 수 있음을 증명해 그 의미가 크다.< 그림 2. 대규모 컴퓨터 시뮬레이션 분석과 복잡계 네트워크 제어기술을 통한 다양한 EMT 표현형에 대한 이해 >암세포의 비정상적인 EMT는 암세포의 이동과 침윤, 화학요법 치료에 대한 반응성 변화, 강화된 줄기세포능, 암의 전이 등 다양한 악성 형질로 이어지게 된다. 특히 암세포의 전이 능력 획득은 암 환자의 예후를 결정짓는 매우 중요한 요소다. 이번에 개발된 폐암 세포의 EMT 역전 기술은 암세포를 리프로그래밍해 높은 가소성과 전이 능력을 제거하고 항암 화학치료의 반응성을 높이도록 하는 새로운 항암 치료 전략이다. 조광현 교수는 "높은 전이 능력과 약물저항성을 획득한 폐암 세포를 전이 능력이 제거되고 항암 화학요법치료에 민감한 상피세포 상태로 온전히 역전시키는 데 성공함으로써 암 환자의 예후를 증진할 수 있는 새로운 치료전략을 제시했다ˮ라고 말했다.< 그림 3. EMT 하이브리드 특징의 온전한 제거를 위한 복잡계 분자네트워크 분석 및 리프로그래밍 분자 타겟 발굴 >조광현 교수 연구팀은 암세포를 정상세포로 되돌리는 가역 치료원리를 최초로 제시한 뒤 2020년 1월에 대장암세포를 정상 대장 세포로 되돌리는 연구 결과를 발표했고, 2022년 1월에는 가장 악성인 유방암세포를 호르몬 치료가 가능한 유방암세포로 리프로그래밍하는 연구에 성공한 바 있다. 이번 연구 결과는 전이 능력을 획득한 폐암 세포 상태를 전이 능력이 제거되고 약물 반응성이 증진된 세포 상태로 되돌리는 가역화 기술 개발의 세 번째 성과다. 한편 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업 등의 지원으로 수행됐다.< 그림 4. 폐암 세포주 실험을 통한 검증 >< 그림 5. 연구결과 모식도 >
동문께서 납부해 주시는 회비를 기반으로
KAIST총동문회 사업이 운영되고 있습니다.
[동문회비 무통장 입금 안내]
- 은행명 : 우리은행
- 계좌번호 : 270-139249-01-002
- 예금주 : 카이스트총동창회
- 연회비 : 5만원, 평생회비 : 50만원
Accumulate fund status
682,910,000KRW
