동문소식

모교 소식

[연구]대기 오염 저감 위한 신개념 원자 촉매 설계
  • KAIST총동문회
  • 2025-07-22
  • 조회수  16
(왼쪽부터) 인하대 김종훈 교수, 우리대학 한규호 박사, 박정영 교수
< (왼쪽부터) 인하대 김종훈 교수, 우리대학 한규호 박사, 박정영 교수 >

백금 셀레나이드는 백금(Pt)과 셀레늄(Se)이 층상 구조로 결합된 이차원 물질로, 우수한 결정성과 층간 상호작용의 정밀한 제어를 통해 다양한 물리적·화학적 특성의 조절이 가능한 것으로 알려져 있다. 이러한 특성으로 인해, 반도체, 광검출기, 전기화학 소자 등 다양한 분야에서 활발히 연구되어 왔다. 이번 연구진은 백금 셀레나이드 표면에 존재하는 원자 수준의 백금이 기체 반응에 대해 촉매로 기능할 수 있다는 새로운 설계 개념을 제시했으며, 이를 통해 고효율 이산화탄소 전환 및 일산화탄소 저감 등을 위한 차세대 기체상 촉매 기술로서의 가능성을 입증했다.

우리 대학 화학과 박정영 석좌교수 연구팀이 충남대학교 김현유 교수, 미국 센트럴플로리다대학교(UCF) 정연웅 교수 연구팀과 공동연구를 통해, 이차원 전이금속 칼코겐화합물인 백금 셀레나이드(PtSe₂) 표면에 노출된 백금 원자를 활용하여 우수한 일산화탄소 산화 성능을 구현하는 데 성공했다고 22일 밝혔다.

연구진은 촉매 성능을 극대화하기 위해 기존의 백금 덩어리 촉매 형태에서 백금 원자가 고밀도로 표면에 분산되도록 하여, 더 적은 양의 백금으로 더 많은 촉매반응을 유도하였으며, 표면의 전자 구조를 제어하여 백금과 셀레늄 사이의 전자 상호작용을 활발하게 일어나도록 유도하였다. 이 과정을 통해 제작된 수 나노미터 두께의 백금 셀레나이드 박막은, 동일 조건에서 일반 백금 박막보다 전 온도 범위에서 더 우수한 일산화탄소 산화 성능을 나타냈다.

그림 1. (위) PtSe2 박막의 결정 구조를 나타내는 모식도. (왼쪽 아래) 측면에서 촬영한 주사형 투과 전자현미경 (cross-sectional HAADF-STEM) 및 (오른쪽 아래) 고해상도 투과 전자현미경(cross-sectional HRTEM) 이미지. 특히 왼쪽 아래의 이미지에서는 실제 백금과 셀레늄 원자들의 배열이 시각적으로 확인된다.
< 그림 1. (위) PtSe2 박막의 결정 구조를 나타내는 모식도. (왼쪽 아래) 측면에서 촬영한 주사형 투과 전자현미경 (cross-sectional HAADF-STEM) 및 (오른쪽 아래) 고해상도 투과 전자현미경(cross-sectional HRTEM) 이미지. 특히 왼쪽 아래의 이미지에서는 실제 백금과 셀레늄 원자들의 배열이 시각적으로 확인된다. >

특히, 표면에서는 일산화탄소와 산소가 골고루 비슷한 비율로 흡착되어 서로 반응할 기회가 높아졌고, 이로 인해 촉매 반응이 크게 향상됐다. 이러한 성능 향상의 핵심은 ‘셀레늄 결손(Se-vacancy)’으로 인해 노출이 확대된 표면 백금 원자들이 드러나면서 기체들이 붙을 수 있는 흡착점도 늘어났다는 데 있다.

연구진은 해당 백금 원자들이 실제 반응 과정에서 흡착점으로 작용했다는 사실을 포항가속기연구소에서 수행된 상압 엑스선 광전자분광(AP-XPS) 분석을 통해 실시간으로 확인했다. 이러한 고정밀 분석은 1나노미터 수준의 표면을 상압 환경에서 관찰할 수 있는 고도 장비 덕분에 가능했다. 동시에 컴퓨터 시뮬레이션 (밀도범함수이론*) 계산을 통해, 백금 셀레나이드가 일반 백금과는 다른 전자 흐름의 특성을 가지고 있음을 이론적으로도 입증했다.

*밀도범함수이론(Density Functional Theory, DFT): 전자 밀도(electron density)를 기반으로 시스템의 전체 에너지를 계산하는 방법

박정영 교수는 “이번 연구는 기존 백금 촉매와 다른 이차원 층상 구조의 백금 셀레나이드를 활용해, 기체 반응에 특화된 촉매 기능을 이끌어낸 새로운 설계 전략을 제시한 것”이라며, “백금과 셀레늄 사이의 전자적 상호작용이 일산화탄소와 산소를 균형있게 흡착하는 반응 조건을 만들었고 기존 백금보다 전체 온도내에서 반응성이 높도록 설계하여 실제 적용성이 향상되게 하였다. 이로써 원자 단위 설계, 2차원 물질 플랫폼, 흡착 조절 기술 등을 통해 고효율 촉매 반응 메커니즘을 구현할 수 있었다”고 밝혔다.

그림 2. (왼쪽) PtSe2 표면에서 진행되는 일산화탄소 산화 반응에 대한 모식도. 표면의 셀레늄이 떨어진 자리 아래에 존재하는 백금에 기체 반응물들이 흡착되어 반응이 진행된다. (가운데) 진공상태와 일산화탄소 산화반응 환경에서 연속적으로 진행된 상압 엑스선 광전자분광 분석. 진분홍색 픽은 표면에 노출된 백금의 존재를 보이고 이가 흡착점으로 기능함을 시사한다. (오른쪽 위) PtSe2 표면에 흡착한 일산화탄소와 산호의 흡착을 보여주는 모식도. 두 기체 사이의 흡착 에너지 차이가 일반적인 백금 표면에 대한 흡착에 비해 크게 완화되었다. (오른쪽 아래) 온도에 따른 PtSe2 박막과 백금 박막의 일산화탄소 산화 반응 성능 비교.
< 그림 2. (왼쪽) PtSe2 표면에서 진행되는 일산화탄소 산화 반응에 대한 모식도. 표면의 셀레늄이 떨어진 자리 아래에 존재하는 백금에 기체 반응물들이 흡착되어 반응이 진행된다. (가운데) 진공상태와 일산화탄소 산화반응 환경에서 연속적으로 진행된 상압 엑스선 광전자분광 분석. 진분홍색 픽은 표면에 노출된 백금의 존재를 보이고 이가 흡착점으로 기능함을 시사한다. (오른쪽 위) PtSe2 표면에 흡착한 일산화탄소와 산호의 흡착을 보여주는 모식도. 두 기체 사이의 흡착 에너지 차이가 일반적인 백금 표면에 대한 흡착에 비해 크게 완화되었다. (오른쪽 아래) 온도에 따른 PtSe2 박막과 백금 박막의 일산화탄소 산화 반응 성능 비교. >

이번 연구는 우리 대학 화학과 한규호 박사, 충남대 신소재공학과 최혁 박사, 인하대 김종훈 교수가 공동 제1 저자로 참여했으며, 세계적 권위의 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 지난 7월 3일 자로 게재됐다.

※ 논문 제목: Enhanced catalytic activity on atomically dispersed PtSe2 two-dimensional layers

※ DOI: 10.1038/s41467-025-61320-0

한편, 이번 연구는 과학기술정보통신부의 중견연구자지원사업과 교육부의 중점연구소사업, 국가전략기술소재개발사업, 미국 국립과학재단(NSF) CAREER 프로그램, 인하대학교 연구비, UCF 박사후연구자 프로그램(P3)의 지원을 받아 수행됐으며, 포항가속기연구소 및 한국기초과학지원연구원(KBSI)의 협조로 가속기 기반 분석이 진행됐다.