동문소식

모교 소식

[연구]KAIST-카카오뱅크, '설명 가능한 AI' 속도 11배 높였다. "금융 AI 신뢰도↑"​
  • KAIST총동문회
  • 2025-12-24
  • 조회수  14

(왼쪽부터) 김재철AI대학원 최재식 교수, 이찬우 박사과정, 박영진 박사과정

< (왼쪽부터) 김재철AI대학원 최재식 교수, 이찬우 박사과정, 박영진 박사과정 >

 

우리 대학 김재철AI대학원 최재식 교수 연구팀이 ㈜카카오뱅크(대표 윤호영)와 공동으로 인공지능(AI) 모델의 판단 근거를 실시간으로 설명할 수 있는 가속화 설명 기술을 개발했다고 밝혔다. 

이번 연구 성과는 AI 모델의 예측 결과에 대한 기존 설명 알고리즘 대비 평균 8.5배, 최대 11배 이상 빠른 처리 속도를 달성해, 금융 서비스 등 실시간 의사결정이 필요한 분야에서 설명가능 인공지능(Explainable Artificial Intelligence, 이하 XAI) 기술의 실용화 가능성을 크게 높였다.

금융 분야에서는 AI 시스템이 내린 결정에 대한 명확한 설명이 필수적이다. 특히 대출 심사나 이상거래 탐지와 같이 고객의 권익과 직결된 서비스에서는 AI 모델의 판단 근거를 투명하게 제시해야 하는 규제 요구가 점차 강화되고 있다. 하지만 기존의 설명가능 인공지능(XAI) 기술은 정확한 설명을 생성하기 위해 수백에서 수천 개의 기준점(Baseline)을 반복 계산해야 하므로 막대한 연산 비용이 발생했다. 이는 실시간 서비스 환경에서 설명가능 인공지능 (XAI) 기술의 적용을 제약하는 주요 요인이었다.

최재식 교수 연구팀은 이러한 문제를 해결하기 위해 'ABSQR(Amortized Baseline Selection via Rank-Revealing QR)'이라는 설명 알고리즘 가속화 프레임워크를 개발했다. ABSQR은 AI 모델 설명 과정에서 생성되는 가치 함수 행렬(value function matrix)이 저차원 구조를 가진다는 점에 착안해, 수백 개의 기준점 중에서 핵심적인 소수만을 선별하는 방식을 도입했다. 기준점 개수에 비례하던 연산량을 선별된 중요 기준점 개수에만 비례하도록 획기적으로 줄여, 설명 정확도는 유지하면서도 계산 효율성을 극대화했다.

구체적으로 ABSQR은 두 단계로 작동한다. 첫 번째 단계에서는 특이값 분해(SVD)와 랭크 판별형 QR 분해(Rank-Revealing QR decomposition) 기법을 활용해 중요한 기준점들을 체계적으로 선별한다. 이는 기존의 무작위 샘플링 방식과 달 정보력 복원 유지를 목적으로 한 결정론적 선택 방법으로, 설명의 정확도를 보장하면서도 계산량을 획기적으로 줄일 수 있다. 두 번째 단계에서는 사전에 계산해둔 기준점의 가중치들을 클러스터 기반 검색을 통해 재사용하는 가속화 추론(amortized inference) 메커니즘을 도입해, 실시간 서비스 환경에서 모델 평가를 반복하지 않고도 모델의 예측 결과에 대한 설명을 제공할 수 있게 했다.

연구팀은 다양한 실제 데이터셋을 대상으로 한 실험을 통해 ABSQR의 우수성을 검증했다. 금융, 마케팅, 인구통계 등 5개 분야의 표준 데이터셋에 대한 테스트 결과, ABSQR은 모든 기준점을 사용하는 기존 설명 알고리즘 대비 평균 8.5배 빠른 처리 속도를 달성했으며, 최대 11배 이상의 속도 향상을 기록했다. 또한, 속도 향상에 따른 설명 정확도 저하를 최소화하여 기준 알고리즘 대비 최대 93.5%의 설명 정확도를 유지했다. 이는 실무 환경에서 요구되는 설명 품질을 충분히 만족하는 수준이다.

ABSQR 프레임워크 개요도. (1) 기준점 선택 단계에서 가치 함수 행렬의 저차원 구조를 활용해 소수의 핵심 기준점만을 선별하고, (2) 가속화 검색 단계에서 사전 계산된 기준점 가중치 계수를 클러스터 기반으로 재사용함으로써, 기준점 개수에 비례하던 연산량을 선별된 핵심 기준점 개수에만 비례하도록 획기적으로 줄였다.

< ABSQR 프레임워크 개요도. (1) 기준점 선택 단계에서 가치 함수 행렬의 저차원 구조를 활용해 소수의 핵심 기준점만을 선별하고, (2) 가속화 검색 단계에서 사전 계산된 기준점 가중치 계수를 클러스터 기반으로 재사용함으로써, 기준점 개수에 비례하던 연산량을 선별된 핵심 기준점 개수에만 비례하도록 획기적으로 줄였다. >

 

카카오뱅크 관계자는 "앞으로도 끊임없는 연구개발을 통해 금융 서비스의 신뢰도와 편의성을 높이고, 고객이 체감할 수 있는 혁신적인 금융 기술을 선보이겠다"고 밝혔다.

공동 제1 저자인 KAIST 이찬우, 박영진 연구원은 "금융 분야에서 실시간 적용을 위해 가장 중요한 과제인 가속화 문제를 해결한 방법론으로, 사용자에게 학습 모델에 대한 의사결정 원인을 실시간으로 제공할 수 있음을 입증했다"라고 연구의 의의를 설명했다. 이어 "이번 연구는 설명 알고리즘에서 불필요한 연산과 중요한 기준점 선택이 무엇인지에 대한 새로운 통찰을 제공하며, 설명 기술의 효율성 향상에 실질적으로 기여할 것"이라고 덧붙였다.

KAIST 김재철AI대학원 이찬우, 박영진 박사 과정 연구원과 카카오뱅크 금융기술연구소 이현근, 유예은 연구원이 공동 제1 저자로 참여한 이번 연구는 정보 및 지식 관리 분야의 세계 최고 권위 학술대회인 'CIKM 2025(ACM International Conference on Information and Knowledge Management)'에서 11월 12일에 발표되었다. 

※ 논문명:  Amortized Baseline Selection via Rank-Revealing QR for Efficient Model Explanation

※ 저자 정보:

   - 공동 제1저자: 이찬우(KAIST 김재철AI대학원), 박영진(KAIST 김재철AI대학원), 이현근(카카오뱅크), 유예은(카카오뱅크)

   - 공저자: 한대희(카카오뱅크), 최준호(KAIST 김재철AI대학원), 김건형(KAIST 김재철AI대학원)

   - 교신저자: 김나리(KAIST 김재철AI대학원), 최재식(KAIST 김재철AI대학원)

※ DOI: https://doi.org/10.1145/3746252.3761036 

한편, 이번 연구성과는 카카오뱅크의 산학 연구과제 ‘금융분야 설명가능 인공지능 알고리즘 고도화 연구’와 과기정통부·정보통신기획평가원(IITP)의 지원 과제 ‘플러그앤플레이 방식으로 설명가능성을 제공하는 인공지능 기술 개발 및 인공지능 시스템에 대한 설명 제공 검증'를 통해 수행됐다.

 

출처 : https://researchnews.kaist.ac.kr/researchnews/html/news/?mode=V&mng_no=55790&skey=&sval=&list_s_date=&list_e_date=&GotoPage=1