연구개발
- KAIST총동문회
- 2026-01-06
- 조회수 45

< (왼쪽부터)KAIST 전상훈 교수, 김승엽 박사과정, 조홍래 박사후연구원, 이상호 박사과정, 정태승 박사과정, 박선재 석사과정 >
인공지능(AI) 고도화로 센서·연산·메모리를 하나로 통합하는 초저전력 반도체 기술의 중요성이 커지고 있다. 그러나 기존 구조는 데이터 이동에 따른 전력 손실과 지연, 메모리 신뢰성 한계를 안고 있다. 이러한 문제를 해결할 ‘센서–연산–저장’ 통합 AI 반도체 핵심 기술을 국내 연구진이 제시해 국제 학계의 주목을 받았다.
우리 대학은 전기및전자공학부 전상훈 교수 연구팀이 지난 12월 8일부터 10일까지 미국 샌프란시스코에서 열린 세계 최고 권위의 반도체 학회 ‘국제전자소자학회(IEEE IEDM 2025)’에서 총 6편의 논문을 발표했으며, 이 가운데 하이라이트 논문과 최우수 학생 논문(Top Ranked Student Paper)으로도 동시에 선정되었다고 31일 밝혔다.
※하이라이트 논문: Monolithically Integrated Photodiode–Spiking Circuit for Neuromorphic Vision with In-Sensor Feature Extraction, 논문 링크: https://iedm25.mapyourshow.com/8_0/sessions/session-details.cfm?scheduleid=255
※최우수 학생 논문: A Highly Reliable Ferroelectric NAND Cell with Ultra-thin IGZO Charge Trap Layer; Trap Profile Engineering for Endurance and Retention Improvement, 논문링크: https://iedm25.mapyourshow.com/8_0/sessions/session-details.cfm?scheduleid=124
하이라이트 논문으로 선정된 M3D 집적 신경모방 시각 센서 연구는 사람의 눈과 뇌를 하나의 칩 안에 쌓아 올린 반도체다. 쉽게 말해, 빛을 감지하는 센서와 뇌처럼 신호를 처리하는 회로를 아주 얇은 층으로 만들어 위아래로 겹쳐 한 칩에 넣었고, 이 덕분에 보고–판단하는 과정이 동시에 이뤄지는 구조를 구현했다.
이를 통해 연구팀은 카메라 센서 안에서 바로 ‘보고 동시에 판단하는’ AI 연산 기술이 동시에 이뤄지는 ‘세계 최초의 인-센서 스파이킹 컨볼루션(In-Sensor Spiking Convolution)’ 플랫폼을 완성했다.

< 그림 1. 수직 적층형 구조의 AI용 광학신호-스파이크 주파수 변환기 연구 요약 >

< 그림 2. 산화물 박막 트랜지스터 기반 2T-2C 근접 픽셀 아날로그 연산 셀 개발 연구 대표도 >
이 기술은 기존에는 이미지를 찍고(센서), 숫자로 바꾼 뒤(ADC), 메모리에 저장하고(DRAM), 다시 연산하는(CNN) 여러 단계를 거쳐야 했지만, 이번 기술은 센서 안에서 바로 연산이 이뤄져 불필요한 데이터 이동을 없앴다. 그 결과 전력 소모는 크게 줄이고, 반응 속도는 획기적으로 높인 실시간·초저전력 엣지 AI 구현이 가능해졌다.
연구팀은 이번 학회에서 이러한 접근을 바탕으로 AI 반도체의 입력부터 저장까지 전 계층을 아우르는 6가지 핵심 기술을 제시했다. 기존 반도체 공정을 그대로 쓰면서도 전기를 훨씬 덜 쓰는 뇌처럼 작동하는 뉴로모픽 반도체와 AI에 최적화된 차세대 메모리를 동시에 만든 것이다.
먼저 센서 쪽에서는, 이미지를 찍는 부품과 계산하는 부품을 따로 두지 않고 센서 단계에서 바로 판단이 이뤄지도록 설계했다. 덕분에 사진을 찍어 다른 칩으로 보내 계산하던 기존 방식보다 전력 소모는 줄고 반응 속도는 빨라졌다.

< 그림 3. 뉴로모픽 소자를 활용한 차세대 생체모방형 촉각 시스템 모식도 >

< 그림 4. Ultra-thin-Mo 및 Sub-3.5 nm HZO 기반의 NC-NAND 개발 연구 대표도 >
또한 메모리 분야에서는, 같은 재료를 활용해 더 낮은 전압으로 동작하면서도 오래 쓰고, 전원이 꺼져도 데이터를 안정적으로 저장할 수 있는 차세대 낸드 플래시를 구현했다. 이를 통해 AI에 필요한 대용량·고신뢰성·저전력 메모리를 한꺼번에 만족하는 기반 기술을 제시했다.

< 그림 5. 차세대 3D FeNAND 메모리 개발 연구 대표도 >

< 그림 6. 차세대 FeNAND 메모리의 전하 거동 규명 및 정량적 분석 방법론 연구 대표도 >
연구를 이끈 전상훈 교수는 “이번 연구는 센서·연산·저장을 각각 따로 설계하던 기존 AI 반도체 구조에서 벗어나, 전 계층을 하나의 재료와 공정 체계로 통합할 수 있음을 실증했다는 점에서 큰 의의가 있다”며, “앞으로 초저전력 엣지 AI부터 대규모 AI 메모리까지 아우르는 차세대 AI 반도체 플랫폼으로 확장해 나갈 것”이라고 밝혔다.
한편, 이번 연구는 과학기술정보통신부, 한국연구재단 등 기초연구 사업과 극한스케일 극한물성 이종집적 한계극복 반도체기술 연구센터(CH³IPS)를 통해서 지원 받아 수행되었다. 삼성전자, 경북대, 한양대와 협업으로 수행되었다.
