동문소식

모교 소식

[연구]엔비디아보다 2.1배 빠른 유튜브 추천...‘버벅임’없앴다​
  • KAIST총동문회
  • 2026-02-05
  • 조회수  11

<좌상단부터> ㈜ 파네시아 소속 권미령, 장준혁, 이상원, <좌하측부터> KAIST 정명수 교수, 전기및전자공학부 소속 강승관 박사과정, 이승준 박사과정

< <좌상단부터> ㈜ 파네시아 소속 권미령, 장준혁, 이상원, <좌하측부터> KAIST 정명수 교수, 전기및전자공학부 소속 강승관 박사과정, 이승준 박사과정 >

 

유튜브 영상 추천이나 금융 사기 탐지처럼 사람 사이의 복잡한 관계를 빠르게 분석하는 핵심 AI 기술로 ‘그래프 신경망(GNN, Graph Neural Network)’이 있다. 여기서 말하는 그래프는 우리가 떠올리는 그래프 그림이 아니라, 사람과 사람 사이의 연결 관계를 뜻한다. 우리 대학 연구진은 엔비디아보다 추천 속도는 2.1배 빠르고, 지연은 줄이며, 전력 소모까지 낮춘 AI 반도체 기술 ‘오토GNN(AutoGNN)’을 개발해 주목받고 있다.

우리 대학은 전기및전자공학부 정명수 교수 연구팀이 그래프 신경망 기반 인공지능의 추론 속도를 획기적으로 높일 수 있는 AI 반도체 기술 ‘오토GNN’을 세계 최초로 개발했다고 5일 밝혔다.

연구팀은 서비스 지연의 주된 원인이 인공지능 추론 이전 단계인 그래프 전처리(Graph Preprocessing) 과정에 있음을 밝혀냈다. 이 과정은 전체 계산 시간의 70~90%를 차지하지만, 기존 GPU는 복잡한 관계 구조를 정리하는 연산에 한계가 있어 병목 현상이 발생해 왔다.

이를 해결하기 위해 연구팀은 입력 데이터 구조에 따라 반도체 내부 회로를 실시간으로 바꾸는 적응형 AI 가속기 기술을 설계했다. 분석해야 할 데이터의 연결 방식에 맞춰 반도체가 스스로 가장 효율적인 구조로 바뀌는 방식이다.

KAIST 오토GNN(AI 생성이미지)

< KAIST 오토GNN(AI 생성이미지) >

 

연구팀은 필요한 데이터만 골라내는 UPE 모듈과 이를 빠르게 정리·집계하는 SCR 모듈을 반도체 안에 구현했다. 데이터의 양이나 형태가 바뀌면 이에 맞춰 최적의 모듈 구성이 자동으로 적용돼, 어떤 상황에서도 안정적인 성능을 유지할 수 있도록 했다.

성능 평가 결과, 오토GNN은 엔비디아의 고성능 GPU(RTX 3090) 대비 2.1배 빠른 처리 속도를 기록했으며, 일반 CPU 대비 9배 빠른 성능과 함께 에너지 소모를 3.3배 줄이는 효율성을 보였다.

이번 기술은 추천 시스템이나 금융 사기 탐지처럼 복잡한 관계 분석과 빠른 응답이 필요한 인공지능 서비스에 즉시 적용할 수 있다. 데이터 구조에 따라 스스로 최적화되는 AI 반도체 기술을 확보함으로써, 향후 대규모 데이터를 다루는 지능형 서비스의 속도와 에너지 효율을 동시에 높일 수 있는 기반이 마련됐다는 평가다.

오토GNN 기술개요

< 오토GNN 기술개요 >

 

오토GNN 성능 비교 그래프

< 오토GNN 성능 비교 그래프 >

 

하드웨어 프로토타입

< 하드웨어 프로토타입 >

 

정명수 교수는 “이번 연구는 불규칙한 데이터 구조를 효과적으로 처리할 수 있는 유연한 하드웨어 시스템을 구현했다는 점에서 의미가 크다”며 “추천 시스템은 물론 금융·보안 등 실시간 분석이 필요한 다양한 AI 분야에 활용될 것”이라고 말했다.

이번 연구는 2026년 1월 31일부터 호주 시드니에서 열리는 컴퓨터 아키텍처 분야 최우수 국제학술대회인 제32회 ‘IEEE International Symposium on High-Performance Computer Architecture (HPCA 2026)’에서 2월 4일 발표됐다.

※ 논문명: AutoGNN: End-to-End Hardware-Driven Graph Preprocessing for Enhanced GNN Performance, https://2026.hpca-conf.org/details/hpca-2026-main-conference/69/AutoGNN-End-to-End-Hardware-Driven-Graph-Preprocessing-for-Enhanced-GNN-Performance

이 연구는 삼성미래기술육성사업의 지원을 받았다.

 


출처 : https://researchnews.kaist.ac.kr/researchnews/html/news/?mode=V&mng_no=57970&skey=&sval=&list_s_date=&list_e_date=&GotoPage=1