동문소식

모교 소식

[연구]차세대 반도체 핵심소재로 열적으로 안정된 강유전체 소재 최초 개발​
  • 총동문회 관리자
  • 2024-02-06
  • 조회수  136

(왼쪽부터) 전기및전자공학부 전상훈 교수, 김기욱 박사과정

< (왼쪽부터) 전기및전자공학부 전상훈 교수, 김기욱 박사과정 >

우리 대학 전기및전자공학부 전상훈 교수 연구팀이 하프니아 강유전체 소재의 물성적 이해를 바탕으로 반도체 3D 집적 공정에서도 열적으로 안정한 *강유전체 소재를 세계 최초로 개발했다고 12일 밝혔다. 현재 반도체 제조 업계에서 고집적, 고효율의 3D 메모리 소자에 대한 필요성이 꾸준하게 대두되고 있다는 점을 고려할 때, 이번 연구는 강유전체 기반의 3D 메모리 집적 공정에서 핵심 기술로 평가받을 것이라 예상된다. 

*강유전체: 외부의 전기장 없이도 스스로 분극을 가지는 재료로서 외부 전기장에 의해 분극의 방향이 바뀔 수 있는 소재를 말한다. 비휘발성 특성이 있어, 기능성 소재로서 메모리 소자에 활용이 가능하지만, 고온에서 열적으로 안정성을 확보해야하는 도전 목표가 남아 있으며, 일반 유전체를 일컫는 상유전체는 외부의 전기장이 없으면 분극 특성을 유지하지 못한다는 점에서 다르다.

 

하프니아 강유전체 소재는 비휘발성 절연막으로, CMOS 공정 호환성, 동작 속도, 내구성 등의 우수한 물리적 특성을 바탕으로 차세대 반도체의 핵심 소재로써 활발하게 연구되고 있는 물질이다. 하지만 하프니아 소재는 필연적으로 고온에서 비휘발성 특성을 잃고 누설전류가 증가하는 한계를 가진다. 이를 억제하기 위해 세계 유수의 기관들에서 다양한 접근방법들이 보고됐지만, 3D 집적 공정 시에 발생하는 고온의 열처리 조건 (750℃ 이상, 30분)에서 강유전체 박막 내의 일반 유전체 (상유전체) 형성을 억제할 수 없었다. 

그림 1. 3D 구조를 가지는 메모리 소자 (3D 낸드 플래쉬 메모리 및 Monolithic 3D 집적 공정)과 3D 집적 공정 호환이 가능한 강유전체 소재의 기존 문제점과 이를 해결하기 위한 솔루션

< 그림 1. 3D 구조를 가지는 메모리 소자 (3D 낸드 플래쉬 메모리 및 Monolithic 3D 집적 공정)과 3D 집적 공정 호환이 가능한 강유전체 소재의 기존 문제점과 이를 해결하기 위한 솔루션 >

전상훈 교수 연구팀은 세계 최초로 3D 집적 공정에서 요구되는 고온의 열처리 조건에서도 강유전체 박막 내의 상유전체의 형성을 완벽하게 억제하고 비휘발성 기능을 유지하며 우수한 내구성을 가지는 하프니아 강유전체 소재 및 공정 기술을 개발하는 데에 성공했다. 연구팀은 강유전체 박막 내에 이온 반지름이 작은 원소를 고용하는 도핑 기술을 활용해 강유전체 박막의 결정화 온도를 제어함과 동시에 도펀트의 농도에 따른 운동학적 에너지를 고려해 강유전체 소재의 비휘발성 및 기능성과 열적 안정성을 획기적으로 개선했다. 


전상훈 교수 연구팀은 CMOS 공정을 이용해 강유전체 기반의 메모리 소자를 집적했고 고온의 열적 에너지(750℃ 이상, 30분)를 가한 후에도 우수한 강유전성이 발현되는 것을 확인했다. 또한 열적 에너지에 따른 강유전체 소재의 도메인 스위칭 동작을 전기적 측정을 통해 직관적으로 분석할 수 있는 시스템을 개발해 추후, 강유전체 소재의 열적 안정성 연구의 프레임 워크를 구축 및 제시했다. 해당 연구는 학계에서 활발하게 연구되고 있는 강유전체 소재의 기능성과 반도체 제조 업계에서 필요로 했던 강유전체 소재 기반의 3D 메모리 소자 집적 공정 사이의 간극을 줄였다는 점에서 큰 의미를 가진다. 


전상훈 교수는 “이번 연구 결과는 답보상태에 있던 강유전체 소재 기반의 3D 메모리 및 회로 집적 기술 개발에 대한 돌파구가 되는 기술이 될 것으로 판단되며, 향후 고집적/고효율의 시스템 개발에 있어 핵심 역할을 할 것”이라고 설명했다. 


전기및전자공학부 김기욱 박사 과정이 제1 저자로 수행한 이번 연구는 반도체 소자 및 회로 분야의 최고 권위 학회인‘IEEE 국제전자소자학회(International Electron Devices Meeting) 2022 (IEDM 2022)’에 12월 5일 발표를 마쳤다. 한편 이번 연구는 삼성전자(Samsung Electronics)와 차세대 지능형 반도체 사업단의 지능형 반도체 선도기술개발의 지원을 받아 진행됐다