연구개발
-
물리학과
[연구]암흑 물질 액시온 탐색 가능성 획기적 높여
< 물리학과 야니스 교수 >< (왼쪽부터) 물리학과 배성재 학생, IBS 정준우 박사 >암흑 물질이란 질량은 있으나 관측이 불가능한 미지의 물질을 말하며, 우주 전체 에너지의 약 27% 정도를 차지하고 있다. 암흑 물질을 연구하는 주된 이유는 우주의 구조와 진화의 비밀을 밝히고 이를 통해 우주의 형성과 모습을 이해하고자 함이다. 한국 연구진이 암흑 물질 후보로 알려진 액시온의 탐색 효율을 크게 향상시킬 고주파 공진기 튜닝 기술을 개발했다.우리 대학 물리학과 야니스 세메르치디스 교수 연구팀이 기초과학연구원(IBS)(원장 노도영) 산하 액시온 및 극한상호작용 연구단(이하 CAPP)(단장 야니스 세메르치디스)과 협력해 메타물질*을 이용, 암흑 물질인 액시온의 탐색 범위를 효율적으로 확장할 방법을 구현했다고 25일 밝혔다.*메타물질: 아직 자연에서 발견되지 않은 특성을 갖도록 인공적으로 설계한 물질을 말함.암흑물질의 존재와 더불어 또 다른 미스터리는 ‘오늘날 우주가 왜 물질로만 이루어져 있는가?’라는 점이다. 초기 우주에서는 물질과 반물질이 거의 같은 양으로 생성되었을 것이라 추정하고 있다. 따라서, 현재의 우주에 대해, 입자물리학에서는 물질이 반물질보다 압도적으로 우세한 이런 물질-반물질의 불균형을 CP*라고 불리는 대칭성의 깨짐으로 설명하려고 한다. *CP: 전하(Charge)와 공간 반전(Parity)액시온은 강한 상호작용에서 발생하는 이 특정 대칭 불균형과 관련된 문제, 즉 대칭성이 깨져있을 거라는 이론적 예측과 이 대칭성이 보존되는 것처럼 보인다는 실험적 관측 사이의 차이를 해결해 줄 수 있는 가상의 입자이다. 즉, 액시온 입자의 존재는 우주의 물질-반물질 불균형과 암흑물질이라는 두 가지 근본적인 미스터리를 동시에 해결할 열쇠가 될 수 있다.암흑 물질 액시온은 그 고유한 진동 주파수에 맞는 공진기를 통해 탐색할 수 있으며, 최근 암흑 물질 액시온의 질량을 예측하려는 이론적 연구들에 따르면, 현재 민감한 실험들이 다루고 있는 영역보다 더 높은 주파수대에서 탐색이 필요하다는 전망이 제기되고 있다.이에 따라 고주파 탐색의 필요성이 대두되면서 다양한 공진기 개발이 이뤄졌고 고주파 액시온 탐색에서 높은 효율을 기대할 수 있게 됐지만, 고차 공명 모드를 효과적으로 튜닝할 방법은 여전히 부족한 상황이다.< 메타물질의 구조와 실제 공진기 안에 설치된 사진 >이에 연구팀은 음팽창 메타물질 구조를 활용해 회전 운동을 2차원 팽창 및 수축 운동으로 전환하는 새로운 튜닝 메커니즘을 개발했다. 키리가미(kirigami)라는 종이접기/자르기 방식에서 영감을 얻은 음팽창 메타물질 구조체는 특유의 결합 배열 덕분에, 한쪽 면에 팽창·수축하는 힘이 가해질 때 다른 면도 함께 팽창·수축하는 특성을 갖는다.이러한 성질을 이용하면 구조체의 중심이 회전할 때 전체 구조가 팽창하거나 수축하는 움직임으로 변환된다. 이를 통해 간단한 1차원 회전 움직임을 더 복잡한 2차원 움직임으로 확장할 수 있는 혁신적인 구조가 만들어진다.또한 저온 환경에서 음팽창 구조체의 효율적인 움직임을 위해 기어 구조를 도입해 힘을 보강했다. 이를 통해 극저온 환경에서도 최소한의 힘과 열 발생으로 구조체를 효과적으로 구동하며 주파수를 조정할 수 있었다.연구팀은 육각 음팽창 구조를 유전체 튜닝 구조체로 고려하고, 이를 공진기의 적용해 주파수를 효과적으로 조정할 수 있음을 확인했다. 나아가 이 공진기를 극저온으로 냉각한 상태에서 9T(테슬라, 자기장의 강도를 나타내는 단위, 1T는 지구 자기장의 약 2만 배) 자기장을 인가해 실제 액시온 검출 실험을 수행했고, 기존 민감도를 두 배로 향상하는 성과를 거뒀다.연구팀이 개발한 이 독특한 구조체는 극저온과 강한 자기장 환경에서도 작동 가능한 메타물질 기반 주파수 조정 장치로, 향후 고주파 영역의 암흑 물질 액시온 탐색에 적극 활용될 것으로 기대된다. 또한, 이 시스템은 극한의 저온·고자기장 환경에서 로보틱스 분야로도 확장될 잠재력을 가지고 있다.제1 저자인 KAIST 배성재 박사과정 학생은 “이 결과는 고차 공명모드를 실용적으로 활용할 수 있는 튜닝 메커니즘의 입증을 통해 고주파 액시온 탐색에 새로운 방향을 제시한 것”이라고 밝혔으며, 공동 제1 저자인 IBS 정준우 박사후 연구원은 “궁극적으로 액시온 암흑 물질의 비밀을 풀기 위해 보다 포괄적이고 효과적인 탐색 전략의 돌파구를 마련했다”라고 덧붙였다.물리학과 배성재 박사과정과 IBS-CAPP 정준우 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘피지컬 리뷰 레터스(Physical Review Letters)’ 11월 22일 133호에 게재됐다. (논문명 : Search for Dark Matter Axions with Tunable TM020 mode)한편 이번 연구는 기초과학연구원의 지원을 받아 수행됐다.
- KAIST총동문회
- 2025-05-13
-
[연구]획기적인 반도체 소자 설계를 위한 2차원 공진기 개발
< (왼쪽부터) 물리학과 최형순 교수, 박동성 박사과정 >빛을 이용한 광공진기가 현대 정보·통신 산업에 필수적인 것과 같이, 양자 정보를 처리하는 차세대 반도체 소자를 설계하는 데에 활용될 수 있는 2차원 전자를 가두는 공진기*를 세계 최초로 구현하여 화제다.*공진기란 한정된 공간 안에 파동을 가두는 장치로서 빛이나 음파, 혹은 통신 기술에 쓰이는 전자기파와 같은 파동을 제어하는 분야에서 필수적으로 활용됨. 우리 대학 응집상 양자 결맞음 센터(센터장 물리학과 심흥선 교수)는 우리 대학 물리학과 최형순 교수, 부산대학교 정윤철 교수, 전북대학교 최형국 교수와 공동연구를 통해 2차원 전자의 파동성을 이용한 공진기를 개발하는데 성공했다고 13일 밝혔다. 빛은 파동이면서도 다양한 매질 내에서 장거리 이동이 가능하다. 따라서 빛은 마주보는 거울 사이에 가두어 두더라도 소실되지 않고 여러 차례 왕복이 가능하여 광공진기 개발에 용이하고 실제로 다양한 광학소자들이 이미 폭넓게 개발되어 활용되고 있다. 반면에 물질 내부의 전자는 매질 내에서 쉽게 산란되어 빛의 파동성을 유효하게 활용하는 기술이나 소자 개발이 쉽지 않다. 이런 한계를 극복하고 전자를 이용하여 광학 기술을 모사하는 것을 '전자광학'이라고 한다. 이번 연구는 전자가 단순히 파동성을 띈다는 사실을 확인한 것에 그치지 않고 광공진기의 2차원 전자광학적 소자에 대응되는 전자공진기를 실제로 구현했다는 점에서 의미가 크다.< 그림 1. 반도체 내에서 전자 공진기의 구조를 보여주는 모식도 >지금까지 직진하는 1차원 전자를 가둬 공진기를 만든 사례는 있었지만, 2차원 평면상에서 반사나 회절, 간섭 등이 복합적으로 일어나는 전자를 가둬 공진기를 만든 처음 사례이다. 이번 연구를 통해 앞으로 더욱 다양한 형태로 전자를 제어할 수 있는 원천기술로도 활용될 수 있을 것으로 기대된다. 공동연구팀은 반도체 나노소자 공정을 통해 전자의 파동을 반사할 수 있는 곡면거울을 제작하고 광공진기의 구조를 2차원 전자에 적용하여 물질 파동 또한 빛과 동일한 방법으로 가두어 둘 수 있다는 사실을 밝혀낸 것이다. 이를 위해 반도체를 극저온으로 냉각하면 반도체 내부의 전자가 수 미크론(백만분의 1미터) 정도 양자역학적 특성이 보존되는 2차원 전자 파동 형태로 존재할 수 있다. 이 반도체 위에 전극을 입히고 강한 음전압을 걸어주면 전극이 있는 영역으로는 전자가 진입하지 못하게 되므로 전자가 반사되는 거울 역할을 할 수 있다. 이 원리를 적용하여 두 개의 마주 보는 곡면거울로 이루어진 공진기 구조를 만들고 그 내부에 전자 파동을 주입하여 그 전도도를 측정함으로써 실제로 전자가 공명하는 특성이 관측하였다. 이를 통해 양자역학적 특성을 갖는 물질 파동 또한 빛과 동일한 방법으로 가두어 둘 수 있다는 사실을 밝혀낸 것이다.< 그림 2. 전자공진기의 공명특성을 측정하는 전기 회로 >우리 대학 물리학과 박사과정 박동성학생과 부산대학교 박사과정 정환철학생이 공동 제1 저자로 참여한 이 연구 결과는 지난 1월 26일 네이처 자매지인 `네이처 커뮤니케이션즈(Nature Communications)'에 게재됐다. (논문명 : Observation of electronic modes in open cavity resonator) 최형순 교수는 “동 기술은 2차원 전자계의 전자광학 발전에 새로운 가능성을 제시하는 원천기술로써 향후 다양한 양자기술 분야에도 활용될 수 있을 것으로 기대된다”라고 설명했다. 이번 연구는 한국연구재단 선도연구센터(SRC)를 중심으로 이루어졌으며 그 외에도 한국연구재단의 다양한 연구 사업(양자컴퓨팅 개발사업, 기본연구, 중견연구 지원사업 등)의 지원이 있었다.
- 총동문회 관리자
- 2024-03-02