연구개발
-
전기및전자공학부
[연구]마이크로LED 난제 해결..VR 기기서‘현실 같은 영상’구현
< (뒷줄 좌측부터) KAIST 박주혁박사, KAIST 김현수 박사과정, (앞줄 좌측부터) KAIST HaoiLe Bao 석사과정, 김채연석사과정 (동그라미 왼쪽부터) KAIST 김상현 교수, 인하대학교 금대명교수 > TV와 스마트워치, 그리고 최근 주목받는 VR·AR 기기까지. 화면을 구성하는 핵심 기술인 마이크로LED는 머리카락 굵기보다 작은 LED 하나하나가 스스로 빛을 내는 차세대 디스플레이다. 디스플레이 완성의 필수 조건인 빨강·초록·파랑(RGB) 가운데 가장 구현이 어려웠던 적색 마이크로LED 기술을 한국연구진이 고효율·초고해상도로 구현하며, 현실보다 더 선명한 화면 구현할 수 있는 신기술을 내놓았다.우리 대학은 전기및전자공학부 김상현 교수 연구팀이 인하대학교(총장 조명우) 금대명 교수와 공동으로 연구하고 화합물 반도체 제조업체 큐에스아이(대표 이청대)와 마이크로디스플레이·반도체 SoC 설계 기업 라온택(대표 이승탁)과 협업으로, 초고해상도이면서도 전력 소모를 크게 줄인 적색 마이크로LED 디스플레이 기술을 개발했다고 28일 밝혔다.연구팀은 이를 통해 최신 스마트폰 디스플레이 해상도의 약 3~4배, VR·AR 기기에서도 초고해상도 수준의 화면이 아닌 ‘현실에 가까운 영상’을 구현할 수 있는 1700 PPI*급 초고해상도 마이크로LED 디스플레이를 실제로 구현하는 데 성공했다.*PPI: 픽셀은 화면을 구성하는 가장 작은 점으로, 이 픽셀이 얼마나 촘촘히 배치돼 있는지를 나타내는 지표가 PPI(Pixel Per Inch)임마이크로LED는 픽셀 자체가 발광하는 디스플레이 기술로, OLED보다 밝기와 수명, 에너지 효율 면에서 뛰어나지만 두 가지 핵심 난제가 있었다. 첫째는 적색 LED의 효율 저하 문제다. 특히 ‘적색 픽셀’ 구현할때 픽셀이 작아질수록 에너지가 새어나가 효율이 급격히 떨어지기 때문이다. 둘째는 전사(Transfer) 공정의 한계였다. 수많은 미세 LED를 하나씩 옮겨 심어야 하는 기존 공정 방식은 초고해상도 구현이 어렵고 불량률도 높았다.연구팀은 이러한 문제를 동시에 해결했다. 먼저 알루미늄 인듐 인화물/갈륨 인듐 인화물(AlInP/GaInP) ‘양자우물 구조’를 적용해, 픽셀이 작아져도 에너지 손실이 거의 없는 고효율 적색 마이크로LED를 구현했다. 쉽게 말해, 양자우물 구조는 전자가 밖으로 빠져나가지 않도록 ‘에너지 장벽’을 세워 빛을 내는 공간에 가둬두는 기술이다. 이로 인해 픽셀이 작아져도 에너지 손실이 줄고, 더 밝고 효율적인 적색 마이크로LED 구현이 가능해진다.< 적색 마이크로 LED 성능 개선결과 > 또한 LED를 하나씩 옮기는 대신, 회로 위에 LED 층을 통째로 쌓아 올리는 ‘모놀리식 3차원 집적 기술’을 적용했다. 이 방식은 정렬 오차를 줄이고 불량률을 낮춰, 초고해상도 디스플레이를 안정적으로 제작할 수 있다는 장점이 있다. 연구팀은 이 과정에서 회로 손상을 막는 저온 공정 기술도 함께 확보했다.< 모노리식 3D 마이크로LED-on-Si 디스플레이 > 이번 성과는 구현이 가장 어렵다고 알려진 초고해상도 적색 마이크로LED를 실제 구동 가능한 디스플레이로 입증했다는 점에서 의미가 크다. 해당 기술은 화면의 입자감이 거의 느껴지지 않아야 하는 AR·VR 스마트 글래스를 비롯해, 차량용 헤드업 디스플레이(HUD), 초소형 웨어러블 기기 등 다양한 차세대 디스플레이 분야에 폭넓게 활용될 것으로 기대된다.김상현 교수는 “이번 연구는 마이크로LED 분야에서 오랫동안 해결되지 않았던 적색 픽셀 효율과 구동 회로 집적 문제를 동시에 풀어낸 성과”라며, “상용화가 가능한 차세대 디스플레이 기술로 발전시켜 나가겠다”고 말했다.본 연구는 KAIST 정보전자연구소 박주혁 박사가 제1저자로 연구를 주도했으며 연구 결과는 세계적 학술지 Nature Electronics에 1월 20일에 게재됐다.※ 논문명: Monolithic 3D 1700PPI red micro-LED display on Si CMOS IC using AlInP/GaInP epi-layers with high internal quantum efficiency and low size dependency, DOI: 10.1038/s41928-025-01546-4, URL: https://www.nature.com/articles/s41928-025-01546-4한편 이번 연구는 한국연구재단 기본연구(2019), 디스플레이전략연구실 사업(현재 수행 중), 삼성미래육성센터(2020~2023)의 지원을 받아 수행됐다.< 모놀리식 3D 직접 기술 (ai생성이미지) > 출처 : https://researchnews.kaist.ac.kr/researchnews/html/news/?mode=V&mng_no=57750&skey=&sval=&list_s_date=&list_e_date=&GotoPage=1
- KAIST총동문회
- 2026-01-28
-
신소재공학과
[연구]비싼 금속 없이 전고체 배터리 성능 한계 돌파
< (아래) KAIST서동화 교수 (왼쪽), KAIST 김재승 연구원 (오른쪽),(위, 왼쪽부터) 동국대 남경완 교수, 서울대 정성균 교수, 연세대 정윤석 교수 > 배터리는 스마트폰과 전기차 등 현대 사회의 필수 기술이지만, 화재·폭발 위험과 높은 비용이라는 한계를 안고 있다. 이를 해결할 대안으로 전고체 배터리가 주목받아 왔지만, 안전성·성능·가격을 동시에 만족시키기는 쉽지 않았다. 한국 연구진이 비싼 금속을 추가하지 않고도 구조 설계만으로 전고체 배터리 성능을 단번에 수 배 끌어올리는 데 성공했다.우리 대학은 소재공학과 서동화 교수 연구팀이 서울대학교(총장 유홍림) 정성균 교수, 연세대학교(총장 윤동섭) 정윤석 교수, 동국대학교(총장 윤재웅) 남경완 교수 연구팀과의 공동 연구를 통해, 저비용 원료를 사용하면서도 폭발과 화재 위험이 낮고 성능이 우수한 전고체 배터리 핵심 소재 설계 방법을 개발했다고 7일 밝혔다.일반 배터리는 액체 전해질 안에서 리튬 이온이 이동하는 반면, 전고체 배터리는 액체 대신 고체 전해질을 사용한다. 이 때문에 전고체 배터리는 더 안전하지만, 고체 안에서 리튬 이온이 빠르게 이동하도록 만들기 위해서는 값비싼 금속을 쓰거나 복잡한 제조 공정이 필요하다는 문제가 있었다.연구팀은 전고체 전해질 내부에 리튬 이온이 원활하게 이동할 수 있는 통로를 만들기 위해 산소(O²⁻)와 황(S²⁻)과 같은 ‘이가 음이온’에 주목했다. 이가 음이온은 전해질 내부 구조의 기본 틀에 들어가 결정 구조를 변화시키는 역할을 한다.연구팀은 저렴한 지르코늄(Zr) 기반 할라이드 전고체 전해질에 이가 음이온을 도입해 내부 구조를 정밀하게 조절하는 기술을 개발했다. 이 설계 원리는 ‘프레임워크 조절 메커니즘’으로, 전해질 내부에서 리튬 이온이 이동하는 통로를 넓히고 이동 과정에서 마주치는 장벽을 낮추는 방식이다. 이를 통해 리튬 이온 주변의 결합 환경과 결정 구조를 조절해, 이온이 더 빠르고 쉽게 이동하도록 했다.연구팀은 이러한 구조 변화를 확인하기 위해 초고해상도 X-선 산란 분석, 상관거리함수(PDF) 분석, X선 흡수분광(XAS), 컴퓨터 기반 전자 구조 및 확산 모델링(DFT) 등 다양한 정밀 분석 기법을 활용해 원자 수준에서의 변화를 규명했다.그 결과, 산소나 황을 도입한 전해질에서는 리튬 이온의 이동 성능이 기존 지르코늄 기반 전해질보다 2~4배 이상 향상된 것으로 나타났다. 이는 값싼 재료를 사용하고도 실제 전고체 배터리에 적용할 수 있는 수준의 성능을 구현했음을 의미한다.구체적으로, 산소(O²⁻)를 도입한 전해질의 상온 이온전도도는 약 1.78 mS/cm, 황(S²⁻)을 도입한 전해질은 약 1.01 mS/cm로 측정됐다. 이온전도도는 전해질 안에서 리튬 이온이 얼마나 빠르고 원활하게 이동하는지를 나타내는 지표로, 수치가 클수록 배터리 성능이 우수함을 뜻하며, 1 mS/cm 이상이면 상온에서 실제 배터리에 적용하기에 충분한 수준으로 평가된다.< 이가 음이온 도입에 따른 지르코늄 기반 할라이드 전해질의 구조조절 메커니즘 > < 전고체 전지를 위한 고체전해질 원자 재배열(AI생성 이미지) > 서동화 교수는 “이번 연구를 통해 값싼 원료로도 전고체 배터리의 비용과 성능 문제를 동시에 개선할 수 있는 설계 원리를 제시했다”며, “산업적 활용 가능성이 매우 크다”고 말했다. 제1저자인 김재승 연구원은 이번 연구가 전고체 배터리 소재 개발에서 ‘어떤 소재를 쓸 것인가’를 넘어 ‘어떻게 설계해야 하는가’에 대한 방향을 제시한 연구라고 말했다.이번 연구는 KAIST 김재승 연구원과 동국대학교 한다슬 연구원이 공동 제1저자로 참여했으며, 국제 학술지 네이처 커뮤니케이션즈(Nature Communications)에 2025년 11월 27일 자로 게재됐다.※논문명: Divalent anion-driven framework regulation in Zr-based halide solid electrolytes for all-solid-state batteries, DOI: https://www.nature.com/articles/s41467-025-65702-2이번 연구는 삼성전자 미래기술육성센터, 한국연구재단, 국가슈퍼컴퓨팅센터의 지원을 받아 수행됐다. 출처 : https://researchnews.kaist.ac.kr/researchnews/html/news/?mode=V&mng_no=56990&skey=&sval=&list_s_date=&list_e_date=&GotoPage=1
- KAIST총동문회
- 2026-01-08
-
기계공학과
[연구]광컴퓨팅·양자 보안 핵심 ‘빛 반도체’ 직접 찍어낸다
< (왼쪽부터) 김지태 교수 (KAIST), 스치 후 박사 (제1저자, AI 기반 지능형 설계-제조 통합 연구단, KAIST-포항공대), 노준석 교수 (포항공대) > 거대 인공지능(AI)을 위한 초고속 광컴퓨팅, 양자 암호 통신, 초고해상도 증강현실(AR) 디스플레이 등 미래 첨단 산업에서는 빛으로 정보를 처리하는 나노 레이저가 차세대 반도체의 핵심 소자로 주목받고 있다. 우리 대학 연구진이 머리카락보다 얇은 공간에서 빛으로 정보를 처리하는 나노 레이저를 반도체 칩 위에 고밀도로 배치할 수 있는 새로운 제작 기술을 제시했다.우리 대학은 기계공학과 김지태 교수 연구팀이 POSTECH(총장 김성근) 노준석 교수 연구팀과의 공동 연구를 통해, 초고밀도 광집적회로의 핵심 소자인 ‘수직형 나노 레이저’를 만들 수 있는 초미세 3차원 프린팅 기술을 개발했다고 6일 밝혔다.기존 반도체 제조 방식인 리소그래피 공정은 같은 구조를 대량 생산하는 데는 효과적이지만, 공정이 복잡하고 비용이 많이 들어 소자의 형태나 위치를 자유롭게 바꾸기 어렵다는 한계가 있었다. 또한 대부분의 기존 레이저는 기판 위에 눕혀진 수평 구조로 만들어져 공간을 많이 차지하고, 빛이 아래로 새어 나가 효율이 떨어지는 문제가 있었다.연구팀은 이러한 문제를 해결하기 위해 빛을 효율적으로 만들어내는 차세대 반도체 소재인 ‘페로브스카이트’를 수직으로 쌓아 올리는 새로운 3D 프린팅 방식을 개발했다. 이 기술은 전압을 이용해 눈에 보이지 않을 만큼 작은 잉크 방울(아토리터, 10⁻¹⁸ L)을 정밀하게 제어하는 ‘초미세 전기유체 3D 프린팅’ 기술이다.이를 통해 재료를 깎아내는 복잡한 공정 없이, 원하는 위치에 머리카락보다 훨씬 가는 기둥 모양의 나노 구조물을 수직으로 직접 인쇄하는 데 성공했다.기술의 핵심은 이렇게 인쇄된 페로브스카이트 나노 구조물의 표면을 매우 매끄럽게 만들어 레이저 효율을 크게 높였다는 점이다. 연구팀은 프린팅 과정에 기체상 결정화 제어 기술을 결합해, 결정이 거의 하나로 정렬된 고품질 구조를 구현했다. 그 결과 빛의 손실이 적고 안정적으로 작동하는 ‘고효율 수직형 나노 레이저’를 구현할 수 있었다.또한 나노 구조물의 높이를 조절해 레이저가 내는 빛의 색을 정밀하게 바꿀 수 있음을 입증했다. 이를 활용해 육안으로는 보이지 않지만 특수 장비로만 확인할 수 있는 레이저 보안 패턴을 제작했으며, 위조 방지 기술로서의 상용화 가능성도 확인했다.< 페로브스카이트 나노 레이저 3차원 프린팅 > 김지태 교수는 “이번 기술은 복잡한 공정 없이 빛으로 계산하는 반도체를 칩 위에 직접 고밀도로 구현할 수 있게 한다”며, “초고속 광컴퓨팅과 차세대 보안 기술의 상용화를 앞당길 것”이라고 말했다.이번 연구 결과는 기계공학과 스치 후(Shiqi Hu) 박사가 제 1 저자로 나노과학 분야 국제 권위 학술지 ACS Nano에 2025년 12월 6일 온라인 판으로 게재됐다.※논문명: Nanoprinting with Crystal Engineering for Perovskite LasersDOI: https://doi.org/10.1021/acsnano.5c16906이번 연구는 과학기술정보통신부 우수신진연구(RS−2025-00556379), 중견연구자지원사업 (RS-2024-00356928), 이노코어(InnoCORE) AI 기반 지능형 설계-제조 통합 연구단(N10250154)의 지원으로 수행되었다. 출처 : https://researchnews.kaist.ac.kr/researchnews/html/news/?mode=V&mng_no=56931&skey=&sval=&list_s_date=&list_e_date=&GotoPage=1
- KAIST총동문회
- 2026-01-08
-
신소재공학과
[연구]메타버스 시대 이끌 초고해상도 화면 구현 패터닝 기술 개발
< (왼쪽부터) 신소재공학과 조힘찬 교수, 이재환 박사과정, 연성범 박사과정 >생동감 있는 색상, 높은 효율과 긴 수명을 자랑하는 양자점(Quantum Dot) 기반 디스플레이가 주목받고 있다. 특히, 친환경 인듐 포스파이드(InP) 양자점은 현재 TV와 스마트폰을 비롯한 다양한 디스플레이에 폭넓게 활용되고 있다. 그러나 다가오는 메타버스 시대를 현실감 있게 구현하기 위한 디스플레이 구현을 위해서는 초고해상도 양자점 패턴 제작 기술의 개발이 필수적이다.우리 대학 신소재공학과 조힘찬 교수 연구팀이 신규 양자점 리간드*를 개발하여 InP 양자점의 초고해상도 패턴을 형성하는 동시에 소자 효율을 향상시키는 신기술을 개발했다고 13일 밝혔다.*리간드: 양자점 표면에 결합하여 양자점을 보호하고 계면활성제 역할을 하는 물질.InP 양자점은 외부 환경에 민감하여 패턴 형성 공정 중 광학적 특성이 크게 저하되는 한계가 있었다. 또한, 디스플레이 효율에 직결되는 리간드를 조절하는 과정에서도 광학적 특성이 손상되는 문제가 있었다. 따라서, 소재 고유의 특성을 유지하면서 초고해상도 패턴을 구현하고, 소자의 효율까지 높일 수 있는 기술 개발은 큰 도전 과제로 남아 있다.< 그림 1. (A) 빛에 의한 리간드 절단을 통한 양자점의 특성 변화. (B) 리간드 절단 기반 직접 광학 패터닝 개략도 >이에, 조힘찬 교수 연구팀은 양자점의 광학적 특성을 보존하는 동시에 초고해상도 패턴 구현을 가능하게 하는 리간드를 개발하였다. 개발된 리간드는 빛에 의해 절단되어 길이가 짧아지는 특성을 보이는 물질로, 양자점 표면이 변화하면서 용해도 차이가 생겨 패턴 형성이 가능해지는 원리이다. 더불어 짧아진 리간드는 소자에서의 전기 전도도를 증가시켜 향상된 효율의 디스플레이를 구현할 수 있었다.< 그림 2. 리간드 절단 기반 직접 광학 패터닝을 통해 제작된 다양한 패턴. RGB 패터닝, 웨이퍼 규모의 대규모 패터닝, 유연기판상 패터닝에 적용 가능함 >< 그림 3. LED 소자 구조 및 패턴화 된 양자점의 향상된 소자 성능 그래프 >조힘찬 교수는 “이번에 개발한 광민감성 양자점 소재와 패터닝 기술은 기존 기술과 달리 초고해상도 패턴 제작과 양자점 박막의 전기 전도도 향상을 동시에 달성하여 차세대 양자점 LED 기반 디스플레이, 양자점 이미지 센서 등 다양한 미래 산업 분야에 실질적으로 적용될 수 있을 것으로 기대된다”라고 언급했다.연구팀의 이재환 박사과정, 연성범 석박사통합과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘에이씨에스 에너지 레터스 (ACS Energy Letters)’에 12월 13일 온라인 게재됐으며, 1월 호 부록 표지(Supplementary Cover)로 출판될 예정이다.(논문명: Photocleavable Ligand-Induced Direct Photolithography of InP-Based Quantum Dots).한편 이번 연구는 한국연구재단 및 중소벤처기업부의 지원을 받아 수행됐다.
- KAIST총동문회
- 2025-05-20
-
전기및전자공학부
[연구]초박막으로 초고해상도 이미지 즐긴다
< (왼쪽부터) 전기및전자공학부 김상현 교수, 인하대학교 금대명 교수, 예일대학교 임진하 박사후연구원 >한미 공동 연구진이 기존 센서 대비 전력 효율이 높고 크기가 작은 고성능 이미지 센서를 구현할 수 있는 차세대 고해상도 이미지 센서 기술을 개발했다. 특히 세계 시장에서 소니(Sony)社가 주도하고 있는 초고해상도 단파적외선(SWIR) 이미지 센서 기술에 대한 원천 기술을 확보해 향후 시장 진입 가능성이 크다.우리 대학 전기및전자공학부 김상현 교수팀이 인하대, 미국 예일대와 공동연구를 통해 개발한 초박형 광대역 광다이오드(PD)가 고성능 이미지 센서 기술에 새로운 전환점을 마련했다고 20일 밝혔다.이번 연구는 광다이오드의 기존 기술에서 나타나는 흡수층 두께와 양자 효율 간의 상충 관계를 획기적으로 개선한 것으로, 특히 1마이크로미터(μm) 이하의 얇은 흡수층에서도 70% 이상의 높은 양자 효율을 달성했다. 이 성과는 기존 기술의 흡수층 두께를 약 70% 줄이는 결과를 가져왔다.흡수층이 얇아지면 화소 공정이 간단해져 높은 해상도 달성이 가능하고 캐리어 확산이 원활해져 광캐리어 획득에 유리한 장점이 있다. 더불어 원가도 절감이 가능하다. 그러나 일반적으로 흡수층이 얇아지면 장파장의 빛의 흡수는 줄어들게 되는 본질적인 문제가 존재한다.< 그림 1. 본 연구에서 제안하는 도파 모드 공명 구조 상에 집적된 InGaAs 광다이오드 이미지 센서 개략도(좌) 및 제작된 웨이퍼 사진과 주기 격자 구조 주사 현미경 이미지(우) >연구진은 도파 모드 공명(GMR)* 구조를 도입해 400나노미터(nm)에서 1,700 나노미터(nm)에 이르는 넓은 스펙트럼 범위에서 고효율의 광 흡수를 유지할 수 있음을 입증했다. 이 파장 대역은 가시광선 영역뿐만 아니라 단파 적외선(SWIR) 영역까지 포함해 다양한 산업적 응용에서 중요한 역할을 할 것으로 기대된다.*도파 모드 공명: 전자기학에서 사용하는 개념으로 특정 파동(빛)이 특정 파장에서 공명 (강한 전기/자기장 형성)하는 현상. 해당 조건에서 에너지가 최대화되기 때문에 안테나나 레이더 효율을 높이는데 활용된 바 있음.단파 적외선 영역에서의 성능 향상은 점점 고해상도화되는 차세대 이미지 센서의 개발에도 중대한 기여를 할 것으로 예상된다. 특히, 도파 모드 공명 구조는 상보적 금속산화물 반도체(CMOS) 기반의 신호 판독 회로(ROIC)와의 하이브리드 집적, 모놀리식 3D 집적을 통해 해상도 및 기타 성능을 더욱 높일 가능성을 가진다.< 그림 2. 본 연구진이 개발한 광다이오드의 성능 비교 이미지. 기존 2.1마이크로미터 이상의 흡수층 두께에서 1마이크로미터 이하의 흡수층 두께로 50%에서 최대 70%까지 감소시키면서 성능을 유지 >연구팀은 저전력 소자 및 초고해상도 이미징 기술에 대한 국제 경쟁력을 높여 디지털카메라, 보안 시스템, 의료 및 산업용 이미지 센서 응용 분야부터 자동차 자율 주행, 항공 및 위성 관측 등 미래형 초고해상도 이미지 센서의 실현 가능성을 크게 높였다.연구 책임자인 김상현 교수는 "이번 연구를 통해 초박막 흡수층에서도 기존 기술보다 훨씬 높은 성능을 구현할 수 있음을 입증했다”며, "특히 세계 시장에서 소니(Sony)社가 주도하고 있는 초고해상도 단파적외선(SWIR) 이미지 센서 기술에 대한 원천 기술을 확보해 향후 시장 진입 가능성을 열었다”고 설명했다.< 그림 3. 도파 모드 공명 구조 상에 제작된 InGaAs 광다이오드 이미지 센서의 상단 광학 현미경 이미지 및 단면 주사 현미경 이미지(좌). 본 연구에서 제안하는 기술로 제작된 초박막 이미지 센서(빨강)의 양자 효율 성능 향상(우) >이번 연구 결과는 인하대학교 금대명 교수(前 KAIST 박사후 연구원), 임진하 박사(現 예일대학교 박사후 연구원)이 공동 제1 저자로 참여해 국제 저명 학술지인 ‘빛, 과학과 응용(Light: Science & Applications, JCR 2.9%, IF=20.6)’에 11월 15일자 발표됐다. (논문제목: Highly-efficient (>70%) and Wide-spectral (400 nm -1700 nm) sub-micron-thick InGaAs photodiodes for future high resolution image sensors)한편, 해당 연구는 한국연구재단의 지원을 받아 진행됐다.
- KAIST총동문회
- 2025-05-13
-
[연구]유독물질 뺀 초고해상도 QLED 신기술 개발
< (왼쪽부터) 신소재공학과 조힘찬 교수, 이재환 석사과정 >디스플레이 패널에 쓰이는 차세대 발광소재로 양자점(Quantum dot)이 각광을 받고 있다. 특히, 카드뮴이나 납과 같은 유독성 물질을 포함하지 않는 친환경 인듐 포스파이드(InP) 양자점이 주목을 받고 있으나 현재 기술로는 초고해상도 구현이 어려워 양자점 LED(QLED) 디스플레이 및 안경형 증강현실/가상현실 기기 적용에 있어 한계를 지닌다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 친환경 InP 양자점의 우수한 광학적 특성을 유지하며 초고해상도 패턴을 제작하는 신기술을 개발했다고 26일 밝혔다. 현재, 국제 유해물질 제한지침 (RoHS, Restriction of Hazardous Substances) 규정을 만족하지 못하는 제품은 많은 나라에서 판매가 금지되므로, 최근 많은 디스플레이 기업은 환경친화적인 특성을 갖춘 InP 양자점을 디스플레이에서의 빛 방출 소재로 채택하여 TV 등 중대형 디스플레이에 적용하기 시작하였다. 그러나 InP 양자점은 외부 환경에 매우 민감한 성질을 가지고 있어 픽셀을 만드는 패터닝 공정 적용시 소재의 광학적 특성이 크게 저하되는 단점이 있어 우수한 광학적 및 전기적 특성이 동시에 요구되는 QLED 디스플레이나, 기존 TV 대비 수십배의 초고해상도를 필요로 하는 안경형 증강현실/가상현실 기기 적용에 어려움이 있었다.< 그림 1. 제시된 공정을 통해 제작된 다양한 패턴. 친환경 나노 발광소재의 표면 물성을 변화시켜 모양에 상관없는 균일한 패턴을 제작할 수 있음. 해당 기술은 웨이퍼 규모의 대규모 패터닝부터 RGB 패터닝, 그리고 발광다이오드 등 다양한 분야에 적용 가능함 >조 교수 연구팀은 자외선을 받으면 산을 발생시키는 광산 발생기(photoacid generator)의 원리를 활용하여 초미세 양자점 패턴을 제작하였다. 양자점이 자외선을 받은 경우, 생성된 산에 의해 양자점 표면이 변화하면서 자외선을 받지 않은 부분 대비 용해도 차이가 생겨 패턴 형성이 가능해지는 원리이다. 연구팀은 패터닝시 손상된 InP 양자점의 발광 효율을 획기적으로 높일 수 있는 양자점 표면 치료법을 개발하였다. 양자점에는 양자점을 둘러싸고 있는 표면 리간드(ligand)들이 있는데, 이 리간드들에 의해 양자점의 발광 효율이 큰 영향을 받는다. 연구팀은 친환경 InP 양자점의 표면 리간드를 개질할 수 있는 맞춤형 후처리 공정을 개발하였고, 이를 통해 최종적으로 높은 발광 효율을 가지는 1 마이크로미터(μm)급 초미세 양자점 패턴을 구현할 수 있었다. 이는 기존의 디스플레이 (TV, 스마트폰, 모니터 등)에서 일반적으로 요구되는 픽셀 너비와 비교했을 때 수십 배 작은 패턴으로 증강현실/가상현실 기기 적용 가능성을 크게 높였다고 할 수 있다. 또한 연구팀은 정밀한 분석을 통해 개발된 광산 발생기 기반의 패터닝 기술의 반응 원리를 규명했고, 개발된 기술이 양자점 LED나 대면적 공정에 쉽게 적용될 수 있음을 증명하였다.< 그림 2. 광산발생기 기반 직접 광학 패터닝의 원리 및 공정 개요도. 연구팀은 광산을 활용한 리간드 치환 공정을 통해 친환경 InP 양자점의 패터닝을 진행하였다 >조힘찬 교수는 “이번에 개발한 친환경 InP 양자점 패터닝 기술은 높은 발광 효율과 초고해상도 패턴 제작을 동시에 가능하게 하여 차세대 양자점 LED 기반 디스플레이, 증강현실 기기, 이미지 센서 등 다양한 산업에 실제로 적용될 수 있을 것으로 기대하고 있다”라고 언급했다. KAIST 신소재공학과 이재환 석사과정 학생이 제1 저자로, 미국 시카고 대학교의 Dmitri V. Talapin 교수가 공동교신저자로, KAIST 생명화학공학과 이도창 교수 연구팀이 공동저자로 참여한 이번 연구는 국제 학술지 `에이씨에스 에너지 레터스 (ACS Energy Letters)' 에 출판됐다. (논문명 : Direct Optical Lithography of Colloidal InP-Based Quantum Dots with Ligand Pair Treatment)< 그림 3. 광산발생기 기반 직접 광학 패터닝시 발생하는 발광효율 저하 원인과 표면 치료법의 개요도. 연구팀은 발광효율 저하의 주 원인인 밴드갭 내부의 트랩을 표면 치료법을 통해 제거하는 기술을 개발함 >한편 이번 연구는 한국연구재단 및 삼성전자, 중소벤처기업부 그리고 KAIST의 지원을 받아 수행됐다.
- 총동문회 관리자
- 2024-06-29
-
[연구]생생한 가상현실 구현 패터닝 기술 개발
< 신소재공학과 조힘찬 교수 >디스플레이 패널에 들어가는 수많은 픽셀은 빛을 낼 수 있는 발광 소재들을 고해상도로 패터닝(patterning) 함으로써 얻어진다. 특히, 증강현실/가상현실용 근안(near-eye) 디스플레이의 경우 우수한 화질을 얻기 위해서는 기존 디스플레이 이상의 초고해상도 픽셀 패턴이 반드시 필요하다. 우리 대학 신소재공학과 조힘찬 교수 연구팀(공동저자 강정구 교수 연구팀)이 발광성 나노소재의 높은 발광 효율을 유지하며 초고해상도 패턴을 제작하는 패터닝 기술을 개발했다고 17일 밝혔다. 높은 색 순도와 발광 효율로 인해 차세대 발광체로 주목받고 있는 양자점(퀀텀닷)이나 페로브스카이트 나노결정과 같은 용액공정용 나노소재들의 경우, 고유의 우수한 광학적 특성을 유지하면서 균일한 초고해상도 패턴을 제작하는 것이 어렵기 때문에 이를 극복할 수 있는 새로운 소재 및 공정 기술을 개발하는 것이 차세대 디스플레이 구현에 있어서의 필수 요소라고 할 수 있다.< 그림 1. 제시된 공정을 통해 제작된 다양한 패턴 >조 교수 연구팀은 양자점과 페로브스카이트 나노결정이 가지는 강한 광촉매 특성을 활용하여, 양자점 또는 페로브스카이트 나노결정에 빛이 조사되었을 때 나노결정 리간드 사이에서 가교(crosslinking) 화학 반응이 쉽게 유도되도록 소재를 설계하였고, 이를 통해 발광성 나노소재의 고유한 광학적 특성을 완전히 보존할 수 있는 초고해상도 패터닝 기술을 개발했다. 연구팀은 해당 공정을 통해 560 나노미터(nm) 수준의 패턴 너비를 가지는 초고해상도(12,000 ppi급) 페로브스카이트 나노결정 패턴을 균일하게 제작할 수 있음을 보였다. 이는 증강현실/가상현실 디스플레이에서 일반적으로 요구되는 해상도(수천 ppi)를 훨씬 상회하는 값이다. 형성된 발광 나노소재 패턴은 물리적, 광학적 특성 측면에서 높은 균일도를 보였다. 또한 연구팀은 정밀한 분석을 통해 개발된 광촉매 패터닝 공정에서의 정확한 반응 메커니즘을 규명하였고, 이러한 패터닝 메커니즘이 양자점과 페로브스카이트 뿐만 아니라 발광성 고분자에까지 범용적으로 적용될 수 있는 높은 확장성을 가지는 기술이라는 것을 확인하였다. 더 나아가, 연구팀은 개발된 광촉매 패터닝 기술이 연속적인 다층 공정 및 발광 다이오드 소자 제작에 적용 가능하다는 것을 증명하여 높은 산업적 활용 가능성을 입증하였다.< 그림 2. 다이렉트 광촉매 패터닝의 원리 및 공정 개요도 >조힘찬 교수는 “본 광촉매 패터닝 기술은 간단한 공정을 통해 다양한 발광 나노소재의 우수한 광학적 특성을 그대로 유지하면서도, 초고해상도 패터닝을 쉽게 가능하게 한다는 점에서 차세대 디스플레이, 이미지 센서 등 다양한 산업에서 유용하게 활용될 수 있을 것으로 기대하고 있다”라고 언급하였다. 신소재공학과 맹성규 석사과정 및 박선재 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스 (Science Advances)' 8월 9권 33호에 출판됐다. (논문명 : Direct photocatalytic patterning of colloidal emissive nanomaterials). 한편 이번 연구는 한국연구재단 및 삼성전자의 지원을 받아 수행됐다.
- 총동문회 관리자
- 2024-06-13
-
[연구]발열 40% 낮춘 초고해상도 마이크로 LED 기술 구현
< (왼쪽부터) 전기및전자공학부 김상현 교수, 백우진 박사과정, 충북대학교 금대명 교수 >디지털화된 현대인 생활 속에는 웨어러블, 롤러블 디스플레이 등 다양한 형태의 미래 디스플레이가 요구되는데 특히 증강현실 및 가상현실을 위한 스마트 글라스 등 디바이스의 경우에 완벽하게 유저들을 몰입시키는데 요구되는 4K 이상의 해상도가 필요하다. 하지만 디바이스에 요구되는 작은 소비전력 및 제한된 면적에 많은 픽셀을 구현해야 하는 기술적 한계에 봉착하여 완벽하게 구현되지 못하고 있는 실정이다. 우리 대학 전기및전자공학부 김상현 교수 연구팀이 소자의 크기가 마이크로미터(μm, 백만분의 1미터) 정도의 크기를 갖는 마이크로 LED의 소형화될 때 소자 효율이 저하되는 현상을 재규명하고 이를 에피택시 구조 변경으로 근본적인 해결이 가능함을 제시했다고 22일 밝혔다. 에피택시 기술이란 마이크로 LED로 사용되고 있는 초순수 규소 (Silicon) 혹은 사파이어 (Sapphire) 기판을 매개체로 삼아 그 위에 발광체로 쓰이는 질화갈륨 결정체를 쌓아 올리는 공정을 말한다. 마이크로 LED는 OLED 대비 우수한 밝기, 명암비, 수명이라는 장점이 있어 활발히 연구되고 있으며, 삼성전자는 지난 2018년에 ‘The Wall’이라는 마이크로 LED를 탑재한 제품을 상용화했고, 애플은 2025년에 마이크로 LED를 탑재한 제품이 상용화될 것이라는 전망이 있다.< 그림 1. 양자장벽의 두께가 다른 에피택시 구조로 제작된 마이크로 LED의 전계 구동시 발광 분포 이미지 >마이크로 LED를 제작하기 위해선 웨이퍼 위에 성장된 에피택시 구조를 식각 공정을 통해 원기둥 혹은 직육면체의 모양으로 깎아서 픽셀들을 형성하는데, 이 식각 과정에는 플라즈마 기반의 공정이 동반된다. 그러나, 이러한 플라즈마들은 픽셀 형성 과정에서 픽셀의 측면에 결함들을 발생시킨다. 따라서, 픽셀 사이즈가 작아지고 해상도가 높아질수록 픽셀의 표면적 대 부피의 비율이 상승해 공정 중 발생하는 소자 측면 결함이 마이크로 LED의 소자 효율을 더 크게 감소시킨다. 이에 따라, 측면 결함을 완화 혹은 제거하는 것에 많이 연구가 진행됐지만 이러한 방식은 에피택시 구조를 성장한 뒤 후공정으로 진행해야 하는 만큼 개선의 정도에 한계가 존재한다. 연구팀은 마이크로 LED 소자 동작 시 에피택시 구조에 따라 마이크로 LED의 측벽으로 이동하는 전류의 차이가 발생한다는 것을 규명했고, 이를 기반으로 측벽 결함에 민감하지 않는 구조를 설계하여 마이크로 LED 소자 소형화에 따른 효율 저하 문제를 해결하였다. 또한, 제시된 구조는 디스플레이 구동 시 발생하게 되는 열을 기존 대비 40% 정도 낮출 수 있어 초고해상도 마이크로 LED 디스플레이 상용화를 위한 연구로써 큰 의미를 갖는다.< 그림 2. 같은 광량에서 다른 에피택시 구조로 제작된 소자의 열 분포 이미지 >우리 대학 전기및전자공학부 김상현 교수 연구팀의 백우진 박사과정이 제 1 저자로 주도하고 김상현 교수와 충북대학교 금대명 교수(KAIST 박사 후 연구원 재직 당시) 가 교신저자로 지도한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 3월 17일 字 출판됐다 (논문명: Ultra-Low-Current Driven InGaN Blue Micro Light-Emitting Diodes for Electrically Efficient and Self-Heating Relaxed Microdisplay). 김상현 교수는 “이번 기술 개발은 마이크로LED의 소형화의 걸림돌이었던 효율 저하의 원인을 규명하고 이를 에피택시 구조의 설계로 해결한 데에 큰 의미가 있고 앞으로 초고해상도 디스플레이에 활용될 것이 기대된다”라고 말했다. 한편 이번 연구는 삼성미래기술육성센터의 지원을 받아 수행됐다.
- 총동문회 관리자
- 2024-03-22
-
[연구]머리카락 굵기의 1/100보다 작은 초고해상도 디스플레이 픽셀 구현 기술 개발
< 사진 1. 물리학과 조용훈 교수(왼쪽 두번째) 연구팀 단체 사진 >초고해상도 디스플레이는 가상 현실(VR), 증강 현실(AR), 스마트 워치 등의 차세대 전자제품 개발에 필수적인 요소로, 헤드 마운트 디스플레이 방식 뿐 아니라 스마트 글라스, 스마트 렌즈 등에도 적용이 가능하다. 이번 연구를 통해 개발된 기술은 이러한 차세대 초고해상도 디스플레이나 다양한 초소형 광전자 소자를 만드는 데 활용될 수 있을 것으로 기대된다. 우리 대학 물리학과 조용훈 교수 연구팀이 집속 이온 빔을 이용하여 평균 머리카락 굵기(약 100 마이크론)의 100분의 1보다도 작은 0.5 마이크론 스케일의 픽셀을 구현할 수 있는 초고해상도 발광 다이오드 (LED) 디스플레이 핵심 기술을 개발했다고 22일 밝혔다. 현재 초고해상도 LED 디스플레이의 픽셀화는 보통 픽셀 주변의 영역을 물리적으로 깎아내는 식각 방법을 사용하는데, 주변에 여러 결함이 발생하여 픽셀이 작아질수록 누설전류가 증가하고 발광 효율이 떨어지는 부작용이 있다. 또한 픽셀화를 위한 패터닝 및 누설전류를 막기 위한 후공정 과정 등 여러 복합한 공정이 필요하다.< 그림 1. 헬륨 집속 이온 빔 조사를 통한 마이크로 발광 다이오드의 픽셀화 기술 >조용훈 교수 연구팀은 집속 이온 빔을 이용해 복잡한 전, 후 공정 없이도 마이크로 스케일 이하의 크기까지 픽셀을 만들 수 있는 기술을 개발했다. 해당 방법은 집속 이온 빔을 약하게 제어하여 물질 표면에 어떤 구조적 변형을 일으키지 않고, 발광하는 픽셀 모양을 자유자재로 설정할 수 있다는 장점이 있다. 집속 이온 빔 기술은 재료공학이나 생물학 등의 분야에서 초고배율 이미징이나 나노 구조체 제작 등에 널리 쓰여 왔다. 그러나, LED와 같은 발광체 위에 집속 이온 빔을 사용하면 빔을 맞은 부분과 그 주변 영역의 발광이 급격히 감소하기 때문에 나노 발광 구조를 제작하는 데 장벽으로 작용되어 왔다. 이에 조용훈 교수 연구팀은 이러한 문제들을 역발상으로 이용하게 되면 서브 마이크론 (sub-micron) 스케일의 초미세 픽셀화 방식에 활용할 수 있다는 점을 착안했다.< 그림 2. 집속 이온 빔으로 구현한 다양한 크기의 사각형 픽셀들 >연구팀은 표면이 깎이지 않을 정도로 세기가 약화된 집속 이온 빔을 사용했는데, 집속 이온 빔을 맞은 부분에 발광이 급격히 줄어들 뿐만 아니라 국소적인 저항도 크게 증가함을 알아내었다. 이로 인해 LED 표면을 평평하게 유지되면서도 집속 이온 빔을 맞은 부분은 광학적 및 전기적으로 격리가 되어 개별적으로 작동을 할 수 있는 픽셀화가 가능하게 된다. 연구를 주도한 조용훈 교수는 “집속 이온 빔을 이용해 복잡한 공정이 없이도 서브 마이크론 스케일의 초소형 픽셀을 만들 수 있는 기술을 새롭게 개발했고, 이는 차세대 초고해상도 디스플레이와 나노 광전소자에 응용될 수 있는 기반 기술이 될 것” 이라고 말했다.< 그림 3. 연구를 나타내는 이미지 >물리학과 문지환 석사와 김바울 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 한국연구재단의 중견연구자지원사업 및 정보통신기획평가원의 지원을 받아 수행됐으며, 재료 과학 분야의 세계적 학술지인 ‘어드밴스드 머터리얼즈(Advanced Materials)’에 2월 13일 字에 온라인 출간되었고, 다음 오프라인 출간호의 내부 표지로도 선정됐다. (논문명: Electrically Driven Sub-Micron Light-Emitting Diode Arrays Using Maskless and Etching-Free Pixelation)
- 총동문회 관리자
- 2024-03-07
-
[연구]똑똑한 영상 복원 인공지능 기술 개발
< (왼쪽부터) 바이오및뇌공학과 장무석 교수, 이찬석 박사과정 >딥러닝 기술은 영상 복원 속도가 기존 알고리즘 대비 수백 배 이상 빠를 뿐만 아니라 복원 정확도 역시 높다. 하지만, 주어진 학습 데이터에만 의존하는 딥러닝 기술은 영상 취득 환경상에 변화가 생기면 성능이 급격히 저하되는 치명적인 약점이 있다. 이는 알파고와 이세돌 九단과의 대국 시 `신의 한 수'에 의해 알파고의 성능이 급격하게 저하되었던 사례를 떠올리면 쉽게 이해할 수 있다. 즉, 인공지능이 학습하지 못했던 변수(학습 데이터상에 존재하지 않는 수)가 발생할 때 신뢰도가 급격히 낮아지는 인공지능 기술의 근본적인 문제이기도 하다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀과 김재철AI 대학원 예종철 교수 연구팀이 공동 연구를 통해 인공 지능의 신뢰도 문제를 해결할 수 있는 물리적 학습 기반의 영상 복원 딥러닝 기술을 개발했다고 6일 밝혔다. 연구팀은 영상 취득 환경에서 발생할 수 있는 변수 대부분이 물리적 법칙을 통해 수학적으로 기술 가능하다는 점에 착안해 물리적 법칙과 심층 신경망이 통합된 학습 기법을 제시했다.모든 영상 기술은 물리적인 영상 기기를 통해 영상 정보를 취득한다. 연구팀은 이 정보 취득 과정에 대한 물리적인 통찰력을 인공지능에 학습시키는 방법을 개발했다. 예를 들면, `네가 도출한 복원 결과가 물리적으로 합당할까?' 혹은 `이 영상 기기는 물리적으로 이런 변수가 생길 수 있을 것 같은데?'라는 식의 질문을 통해 물리적 통찰력을 인공지능에 이식하는 방법을 제시한 것이다.< 그림 1. 물리 법칙을 통해 학습하는 인공지능 기술의 구상화 >연구팀은 변화하는 영상 취득 환경에서도 신뢰도 높은 홀로그래피 영상* 을 복원하는데 성공했다. 홀로그래피 영상 기술은 의료 영상, 군용 감시, 자율 주행용 영상 등 다양한 정밀 영상 기술에 다양하게 활용될 수 있는데, 이번 연구는 의료 진단 분야의 활용성을 집중적으로 검증하였다.*홀로그래피 영상: 물체의 그림자 패턴(회절 패턴)으로부터 물체의 형태를 복원하는 영상 기법, 일반적인 영상 기술과 달리 위상 변화에 의한 물체의 미세 구조를 감지할 수 있는 영상 기술연구팀은 먼저 3차원 공간상에서 매우 빠르게 움직이는 적혈구의 회절 영상(확산된 그림자형상)으로부터 적혈구의 형태를 실시간으로 복원하는데 성공했다. 이러한 동적인 영상 환경에서 예상치 못한 변수로는 여러 개의 적혈구 덩어리가 복잡하게 겹쳐진다거나 적혈구가 예상하지 못했던 위치로 흘러가는 경우를 생각해 볼 수 있다. 여기서, 연구팀은 인공 지능이 생성한 영상이 합당한 결과인지 빛 전파 이론을 통해 검산하는 방식으로 물리적으로 유효한 복원 신뢰도를 구현하는데 성공하였다.< 그림 2. 흘러내리는 적혈구의 실시간 위상 영상 복원 결과 >연구팀은 암 진단의 표준기술로 자리잡고 있는 생검 조직(생체에서 조직 일부를 메스나 바늘로 채취하는 것)의 영상 복원에도 성공했다. 주목할 점은 특정한 카메라 위치에서 측정된 회절 영상만을 학습했음에도 인공지능의 인지능력이 부가되어 다양한 카메라 위치에서도 물체를 인식하는데 성공했다는 점이다. 이번에 구현된 기술은 세포 염색 과정이나 수 천 만원에 달하는 현미경이 필요하지 않아 생검 조직 검사의 속도와 비용을 크게 개선할 수 있을 것으로 기대된다. 물리적 통찰력을 인공 지능에 이식하는 영상 복원 기술은 의료 진단 분야 뿐만 아니라 광범위한 영상 기술에 활용될 것으로 기대된다. 최근 영상 기술 산업계 (모바일 기기 카메라, 의료 진단용 MRI, CT, 광 기반 반도체 공정 불량 검출 등) 에선 인공지능 솔루션 탑재가 활발히 이루어지고 있다. 영상 취득에 사용되는 센서, 물체의 밝기, 물체까지의 거리와 같은 영상 취득 환경은 사용자마다 다를 수밖에 없어 적응 능력을 갖춘 인공 지능 솔루션에 대한 수요가 큰 상황이다. 현재 대부분의 인공 지능 기술은 적응 능력 부재로 신뢰도가 낮은 문제 때문에 실제 현장에서 활용성이 제한적인 상황이다.< 그림 3. 결장 조직 이미지 복원 결과 >바이오및뇌공학과 이찬석 연구원은 "데이터와 물리 법칙을 동시에 학습하는 적응형 인공지능 기술은 홀로그래피 영상뿐만 아니라 초고해상도 영상, 3차원 영상, 비시선 영상(장애물 뒷면을 보는 영상) 등 다양한 계산 영상 기술에 적용될 수 있을 것으로 기대된다ˮ고 밝혔다. 연구진은 "이번 연구를 통해 인공지능 학습에 있어서 학습 데이터에 대한 강한 의존성(신뢰도 문제)을 물리적 법칙을 결합해 해소했을 뿐만 아니라, 이미지 복원에 있어 매게 변수화된 전방 모델을 기반으로 했기 때문에 신뢰도와 적응성이 크게 향상됐다ˮ며, 이어 "이번 연구에서는 데이터의 다양한 특성 중에서 수학적 혹은 물리적으로 정확히 다룰 수 있는 측면에 집중했고, 향후 무작위적인 잡음이나 데이터의 형태에 대해서도 제약받지 않는 범용 복원 알고리즘을 개발하는 데 주력할 것이다ˮ라고 밝혔다. 바이오및뇌공학과 이찬석 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)'에 지난 1월 17일 字 출판됐다. (논문명: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data) 한편 이번 연구는 삼성미래기술육성사업과 선도연구센터사업의 지원을 받아 수행됐다.
- 총동문회 관리자
- 2024-02-29
