연구개발
-
[연구]햇빛만으로 결빙 방지되는 필름 개발
< (왼쪽부터) 기계공학과 김형수 교수, 편정수 박사과정 >열선, 스프레이 및 오일 주기적 도포, 기판 디자인 변경 등 없이도 금나노입자의 광열 효과를 산업현장에 적용할 수 있는 방빙/제빙 필름 코팅 기술이 개발되었다. 우리 대학 기계공학과 김형수 교수 연구팀(유체 및 계면 연구실)과 화학과 윤동기 교수 연구팀(연성 물질 나노조립 연구실)의 공동융합연구를 통해 단순 증발만으로 금 나노막대 입자를 사분면으로 균일하게 패터닝 할 수 있는 원천 기술을 확보하고, 이를 이용해 결빙 방지 및 제빙 표면을 개발했다고 3일 밝혔다.최근 다양한 코팅 기법을 이용해 목표물 표면의 성질을 제어하려는 연구가 많이 진행되고 있으며, 특히, 기능성 나노 재료 패터닝을 통한 방식이 큰 주목을 받고 있다. 이 중에서도 금 나노 막대(GNR)는 생체 적합성, 화학적 안정성, 비교적 쉬운 합성, 표면 플라즈몬 공명이라는 안정적이면서도 독특한 특성으로 인해 유망한 나노물질 중 하나로 여겨지고 있다. 이때, 금 나노 막대의 성능을 극대화하려면 높은 수준의 증착 필름의 균일도와 금 나노 막대의 정렬도를 획득하는 것이 매우 중요하며, 현재 이를 구현하는 것은 여전히 해결해야 할 큰 문제다.< 그림 1. 균일 사분면 셀룰로오스 나노크리스탈 매트릭스 형성에 대한 유체역학적 원리 >이를 해결하고자, 공동연구팀은 자연계에서 쉽게 추출이 가능한 차세대 기능성 나노 물질인 셀룰로오스 나노크리스탈(CNC)를 활용했다. 셀룰로오스 나노크리스탈 사분면 템플릿에 금 나노 막대를 공동 자가 조립해 균일하게 건조되면서 코팅 전체 면적에 환형으로 균일하게 정렬된 금 나노막대 필름을 개발하는 데 성공했다. 이번 연구에서 획득한 높은 균일도와 정렬도를 갖는 금 나노막대 필름은 기존 커피링 필름과 비교해 향상된 플라즈모닉 광학/광열 성능을 보였으며, 이는 가시광선 파장 영역대의 빛 조사만으로 방빙/제빙 역할을 해낼 수 있음을 연구팀은 실험적으로 증명했다.< 그림 2. 금 나노막대 필름의 광학적 열적 성능 평가 결과 및 방빙 제빙용 플라즈모닉 히터 시연 >기계공학과 김형수 교수는 “이 기술은 플라스틱 및 유연 표면 위에도 제작이 가능해 이를 외장재 및 필름에 활용하면 자체적으로 열에너지를 발생시킬 수 있어, 겨울철에 큰 문제가 되는 자동차 성에, 항공기 제빙, 주거/상용 공간의 유리창 등 다양한 분야에서 자발적 열에너지 하베스팅 효과를 통해 에너지 절약 효과를 가져다 줄 수 있을 것으로 기대한다”고 언급했다. 한편 화학과 윤동기 교수는 “필름화하기 힘들었던 나노셀룰로오스-금입자 복합체를 대면적에서 자유롭게 패터닝해 결빙 소재로 사용할 수 있고, 금의 플라즈모닉 성질을 이용한다면 마치 유리를 장식하는 스테인드 글래스처럼 사용할 수 있다는 점에서 의미가 있다”고 언급했다.< 그림 3. 연구 결과물 사진 >해당 연구 결과는 기계공학과 편정수 박사과정, 박순모 박사(KAIST졸업, 現 코넬 대학교 박사 후 연구원)가 공동 제1 저자로 참여했으며, 국제학술지 `네이처 커뮤니케이션즈(Nature Communications)' 2023년 12월 8일 字 온라인판에 게재됐다. (논문명 : Plasmonic Metasurfaces of Cellulose Nanocrystal Matrices with Quadrants of Aligned Gold Nanorods for Photothermal Anti-Icing, https://doi.org/10.1038/s41467-023-43511-9) 그리고, 연구의 우수성을 인정받아 국제 저널‘재료과학과 화학(Materials Science and Chemistry)’ 과 ‘무기 물리화학(Inorganic and Physical Chemistry)’ 두 편집자 하이라이트(Editors’ Highlights) 페이지에 선정됐다.이번 연구는 한국연구재단의 개인기초 중견 연구(MIST: 2021R1A2C2007835)와 멀티스케일 카이랄 구조체 연구센터 (MSIT: 2018R1A5A1025208) 지원을 받아 수행됐다.
- 총동문회 관리자
- 2024-07-02
-
[연구]물과 산소로 햇빛을 이용해 과산화수소를 생산하는 고효율 촉매 개발
< (왼쪽부터) 신소재공학과 강정구 교수, 우리 대학 김건한 박사 졸업생 >우리 대학 신소재공학과 강정구 교수 연구팀이 물과 산소만으로 햇빛을 이용해 과산화수소를 생산하는 고효율 촉매를 개발했다고 31일 밝혔다. 과산화수소는 주로 소독, 염색, 산화제, 의약품, 반도체, 디스플레이, 로켓 추진연료 등 다양한 산업군에 쓰이는 유용한 자원이다. 연구팀이 개발한 나노구조체 촉매는 빛을 흡수해 산소 분자를 과산화수소 분자로 선택적으로 환원시키며, 지구에 풍부하고 친환경적인 물을 산화제로 이용하기 때문에 친환경적이고 경제적인 원천기술이다. 이 기술은 현재 공정에서 이용되는 고가의 팔라듐 촉매보다 각각 1,500배, 4,500배, 115,000배 저렴한 코발트, 티타늄, 철 산화물을 이용했기 때문에 경제성이 뛰어날 뿐만 아니라, 환경 문제를 유발하는 유기화합물 없이 물과 산소, 햇빛만으로 과산화수소를 생산하기 때문에 친환경적인 특성을 가진다. 김건한 박사(現 옥스포드 대학교 화학과, 우리 대학 신소재공학과 졸업)가 제1 저자로 참여하고, 우리 대학 화학과 김형준 교수 연구팀이 공동으로 참여한 강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 `어드밴스드 에너지 머티리얼즈(Advanced Energy Materials, IF 29.37)' 2월 25일 字 온라인 게재됐다. (논문명: Triphasic metal oxide photocatalyst for reaction site-specific production of hydrogen peroxide from oxygen reduction and water oxidation) 현재 과산화수소 생산은 대부분 `안트라퀴논 공정'을 통해 생산된다. 이 공정은 고압의 수소 기체와 값비싼 팔라듐 기반 수소화 촉매를 이용하기 때문에 경제성과 안전성에서 문제를 가지고 있을 뿐만 아니라 반응 중에 이용되는 유기 오염 물질이 방출되기 때문에 환경 문제를 유발한다. 반면, 햇빛을 에너지원으로 이용해 산소를 과산화수소로 환원시키는 광촉매는 물리적으로 반도체 특성을 갖는 전이 금속산화물을 이용할 수 있기 때문에 기존 팔라듐 촉매보다 수 천배 이상 저렴하다. 또한, 지구에 풍부한 산소로부터 태양에너지를 통해 과산화수소를 생산할 수 있어 안전하고 친환경적인 특성을 가진다. 하지만 기존 과산화수소 생산 광촉매는 산소로부터 과산화수소를 생산하기 위해 전자를 전달하는 산화 반응에 과산화수소보다 더 비싼 알코올류의 산화제를 첨가해야 했다. 또한, 생산된 과산화수소가 광촉매 표면에서 빠르게 분해돼 촉매 효율이 떨어지는 단점을 가지고 있었다. 이에 강정구 교수 연구팀은 고가의 팔라듐 촉매보다 훨씬 저렴한 코발트, 티타늄, 철 산화물을 요소-수열 합성법을 통해 나노 구조화했다. 두 가지 이상의 금속 조합을 갖는 금속산화물의 경우, 일반적으로 각기 다른 금속이 혼합되어 한 가지 구조의 상을 형성한다. 하지만 연구팀은 코발트 전구체의 비율을 높여 철과 코발트 산화물을 분리한 후, 2가 철 산화물의 화학적 비안정성을 이용해 티타늄 산화물과 다시 분리함으로써, 각기 다른 세 가지 금속 산화물이 각자의 산화물 상으로 분리되어 형성되는 삼상 산화물 (Triphasic metal oxide)을 합성했다. 삼상 산화물 광촉매는 2차원적으로 넓은 나노시트(nanosheet) 형태의 코발트 산화물이 있고, 그 위에 코어-쉘(core-shell) 구조를 가진 철 산화물-티타늄 산화물 나노입자가 배열된 독특한 구조를 하고 있다. 또한, 연구팀은 김형준 교수 연구팀과 공동 연구를 통해, 코어-쉘 구조의 나노입자는 효율적으로 가시광선과 자외선을 흡수해 전자를 전달함을 계산 과학을 통해 입증에 성공했다. 코발트 산화물은 기존 물 산화 반응 촉매로 가장 잘 알려진 물질이기 때문에, 물 분자를 흡착해 산소로 환원하고 전자를 제공할 수 있는 능력이 있다. 즉, 물을 산화제로 이용하기 때문에 기존 광촉매에서 이용하는 알코올류를 이용하지 않고도 환원 반응점(reduction reaction-site)으로 원활한 전자전달을 할 수 있다. 한 편, 철 산화물-티타늄 산화물 코어-쉘 나노입자는 각각 가시광선과 자외선을 흡수할 수 있어 효율적인 방법으로 태양광을 흡수할 수 있을 뿐 아니라 산소 흡착 능력이 우수해 반응물인 산소 분자를 선택적으로 흡착할 수 있다. 또한, 구조적으로 코발트 산화물 나노시트 위에 배열되어 있어, 물 산화 반응에서 생긴 전자를 철 산화물이 받아 효율적으로 티타늄 산화물에 전달해 산소 환원 반응을 통한 과산화수소를 생산할 수 있다. 이렇게 생성된 과산화수소는 환원점과 산화점이 분리돼있는 광촉매의 구조적인 특성으로 인해 분해되지 않고 안정적으로 농축되는 특성을 가진다. < 그림 1. 금속산화물을 이용한 산소로부터 물과 햇빛을 이용한 과산화수소 생산 모식도 >강 교수는 "신재생에너지를 이용한 친환경적인 이 기술은 수소 분자와 유기물질을 이용하지 않아 안전성이 뛰어나고, 비교적 값이 저렴한 전이 금속산화물을 이용하기 때문에 경제성이 뛰어나다ˮ라고 소개하면서 "3가지 상의 각 구역에서 산소 환원 반응, 전자-홀 수송, 그리고 물 산화 반응이 일어나기 때문에 광촉매에서 문제가 되고 있던 과산화수소 분해 문제나 알코올 산화제 이용 문제에서 벗어나며 이를 통한 높은 촉매 효율은 기존에 가장 효율이 높다고 알려진 귀금속계 촉매보다 수 천배 저렴할 뿐만 아니라 약 30배 정도 높은 생산성능을 가져 광촉매를 통한 과산화수소 생산의 상용화에 이바지할 것이다ˮ고 말했다. < 그림 2. 삼상 산화금속 전자 현미경 이미지(왼쪽) 및 촉매 반응 모식도(오른쪽) >한편 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단의 지원을 받아 수행됐다.
- 총동문회 관리자
- 2023-12-11