-
총동문회장, KAIST동문서포터즈 교수와 교류
이윤태 총동문회장께서 KAIST동문서포터즈 교수와 오찬하며 교류하였습니다. - 일시 : 11월 12일(수) 12시- 장소 : 대전 식당- 참석자 이윤태 총동문회장,
기계공학과 윤국진 교수, 물리학과 최형순 교수, 화학과 한순규 교수- KAIST총동문회
- 2025-11-20
동문소식 > 행사 갤러리 > 총동문회
-
기계공학과
[연구]‘로봇 전자눈’초소형 적외선 센서 상온 3D 프린팅 제작 가능
< (왼쪽부터) 김지태 KAIST 교수, 오승주 고려대 교수, 티안슈 자오(Tianshuo Zhao) 홍콩대 교수 > 어둠 속에서도 사물을 인식하는 ‘전자 눈’ 기술이 한층 더 진화했다. 자율주행차의 라이다(LiDAR), 스마트폰의 3D 안면 인식, 헬스케어 웨어러블 기기 등에서 사람의 눈을 대신해 ‘보는 기능’을 수행하는 적외선 센서가 핵심 부품으로 꼽히는 가운데, KAIST·공동연구진이 원하는 형태와 크기로 초소형 적외선 센서를 제작할 수 있는 상온 3차원(3D) 프린팅 기술을 세계 최초로 개발했다.우리 대학은
기계공학과 김지태 교수 연구팀이 고려대학교 오승주 교수, 홍콩대학교 티안슈 자오(Tianshuo ZHAO) 교수와 공동으로 상온에서 원하는 형태와 크기의 10 마이크로미터(µm) 이하 초소형 적외선 센서를 제작할 수 있는 3D 프린팅 기술을 개발했다고 3일 밝혔다.적외선 센서는 눈에 보이지 않는 적외선 신호를 전기 신호로 변환하는 핵심 부품으로, 로봇비전 등 다양한 분야의 미래형 전자기술을 구현하는 데 필수적이다. 이에 따라 센서의 소형화·경량화, 그리고 다양한 형태(폼팩터) 구현의 중요성이 커지고 있다.기존 반도체 공정 기반 제조 방식은 대량생산에는 적합했지만, 빠르게 변화하는 기술 수요에 유연하게 대응하기 어렵고, 고온 공정이 필수여서 소재 선택이 제한되며 에너지 소비가 많다는 한계가 있었다.연구팀은 이러한 문제를 해결하기 위해, 금속·반도체·절연체 소재를 각각 나노결정 형태의 액상 잉크로 만들어 단일 프린팅 플랫폼에서 층층이 쌓아 올리는 초정밀 3차원 프린팅 공정을 개발했다.이를 통해 적외선 센서의 핵심 구성 요소를 상온에서 직접 제작할 수 있으며, 맞춤형 형태와 크기의 초소형 센서 구현이 가능해졌다.특히 연구팀은 나노입자 표면의 절연성 분자를 전기가 잘 통하는 분자로 바꾸는 ‘리간드 교환(Ligand Exchange)’ 기법을 3D 프린팅 과정에 적용해, 고온 열처리 없이도 우수한 전기적 성능을 확보했다.그 결과, 사람 머리카락 굵기의 1/10 수준(10 µm 이하)의 초소형 적외선 센서 제작에 성공했다.< 그림 1. 적외선 센서 3차원 프린팅 a, 적외선 센서를 구성하는 전극과 광활성층 상온 인쇄 공정. b, 인쇄된 적외선 마이크로 센서의 구조와 화학적 조성. c, 인쇄된 적외선 센서 마이크로 픽셀 어레이. > 김지태 교수는 “이번에 개발된 3차원 프린팅 기술은 적외선 센서의 소형화·경량화를 넘어, 기존에 상상하기 어려웠던 혁신적인 폼팩터 제품 개발을 앞당길 것”이라며 “또한 고온 공정에서 발생하는 막대한 에너지 소비를 줄여 생산 단가 절감과 친환경적 제조 공정을 실현함으로써, 적외선 센서 산업의 지속 가능한 발전에 기여할 것으로 기대한다”고 말했다.이번 연구 결과는 세계적 학술지 네이처 커뮤니케이션스(Nature Communications) 2026년 10월 16일 자 온라인판에 게재됐다.※ 논문명: Ligand-exchange-assisted printing of colloidal nanocrystals to enable all-printed sub-micron optoelectronics, DOI: https://doi.org/10.1038/s41467-025-64596-4이번 연구는 과학기술정보통신부의 우수신진연구(RS−2025-00556379), 국가전략기술 소재개발사업(RS−2024-00407084), 원천기술국제협력개발사업(RS−2024-00438059)의 지원으로 수행됐다. 출처 : https://researchnews.kaist.ac.kr/researchnews/html/news/?mode=V&mng_no=53810- KAIST총동문회
- 2025-11-05
동문소식 > 모교 소식 > 연구개발
-
기계공학과
[연구]실리콘 투과해 3D 반도체 내부 구조를 비파괴로 측정하는 기술 개발
실리콘 투과해 3D 반도체 내부 구조를 비파괴로 측정하는 기술 개발조회수 : 451 등록일 : 2025-10-31 작성자 : 홍보실 < (왼쪽부터) 김정원 교수, 최형수 박사과정 > 우리 대학
기계공학과 (반도체시스템공학과 겸임) 김정원 교수 연구팀이 광주파수빗(optical frequency comb)을 색수차 공초점 및 분광 간섭계 기술과 결합해, 반도체 소자 후면에서 실리콘을 투과하여 내부 구조를 비파괴적으로 측정할 수 있는 새로운 광학 검사 기술을 개발했다. 최형수 박사과정이 제1저자로 참여하고 삼성전자 메모리사업부 계측기술팀과의 산학협력으로 수행된 이번 연구는 국제학술지 Light: Advanced Manufacturing 10월 29일 字에 게재됐다. (논문명: Backside illumination-enabled metrology and inspection inside 3D-ICs using frequency comb-based chromatic confocal and spectral interferometry)< 첨단 반도체 패키징 소자 내 삼차원 미세 형상을 고해상도로 측정할 수 있는 광주파수빗 기반 후면 계측 시스템 및 측정 결과 > 최근 인공지능(AI)과 클라우드 컴퓨팅의 급성장으로 고성능·고효율 반도체 수요가 폭발적으로 증가하면서, 여러 칩을 수직으로 적층하는 3D 반도체 패키징(3D-IC) 기술이 차세대 반도체의 핵심으로 주목받고 있다. 그러나 전면(front-side)에 복잡한 미세 패턴이 형성된 구조에서는 빛이 산란되어 신호 대 잡음비가 낮아지고, 구리가 채워진 실리콘 관통 비아(Through-Silicon Via, TSV) 와 같은 고종횡비(high aspect ratio) 구조를 정밀하게 계측하기 어려웠다.이러한 한계를 극복하기 위해 연구팀은 실리콘을 투과할 수 있는 1560 nm 파장의 적외선 광주파수빗을 이용해 후면(backside)에서 조사하는 방식의 비파괴 광학 계측 기술을 새롭게 구현했다. 연구팀은 70 nm 대역폭의 적외선 광주파수빗을 광원으로 사용하여, 축 방향 스캐닝 없이 웨이퍼의 두께와 굴절률을 동시에 고속·고정밀로 측정하는 기술을 구현했다. 특히 기존의 전면 검사 방식으로는 불가능했던 상용 메모리 소자 내부의 구리(Cu)가 충전된 TSV의 깊이 계측을 세계 최초로 비파괴 방식으로 성공적으로 수행했다. 이번 연구는 실리콘 기판의 두께와 굴절률을 동시에 측정할 수 있는 독자적 기술적 강점을 바탕으로, 고대역폭 메모리(HBM)와 같은 첨단 3D 반도체 패키징 공정의 양산 수율 향상과 공정 신뢰도 확보에 크게 기여할 것으로 기대된다.김정원 교수는 “이번 연구는 첨단 반도체 공정의 검사 속도와 신뢰성을 동시에 향상시킬 수 있는 새로운 방향을 제시했다”며 “차세대 반도체 생산 라인에 즉시 적용 가능한 수준의 기술 성숙도를 입증했다"고 밝혔다.이번 연구는 삼성전자와 한국연구재단의 지원을 받아 수행됐다. 출처 : https://researchnews.kaist.ac.kr/researchnews/html/news/?mode=V&mng_no=53771- KAIST총동문회
- 2025-11-05
동문소식 > 모교 소식 > 연구개발
-
기계공학과
[연구]그린수소 전지를 전자레인지 돌리듯 단 10분만에 완성하다
< (왼쪽부터)
기계공학과 유형민 박사과정(위),기계공학과 장승수 박사과정(위),기계공학과 이동훈 석박통합과정,기계공학과 윤가영 박사과정,기계공학과 이강택 교수 > 이산화탄소를 배출하지 않는 그린수소(Green Hydrogen) 생산의 핵심 기술인 고체산화물 전해전지((Solid Oxide Electrolysis Cell, SOEC)는 세라믹 분말을 고온에서 굳히는 ‘소결’ 과정이 필요하다. 우리 대학 연구진은 이 과정을 6시간에서 10분으로 단축하고 온도도 1,400℃에서 1,200℃로 낮추는 데 성공했다. 이번 기술은 전지 제조의 에너지와 시간을 크게 줄여, 친환경 수소 시대를 앞당길 혁신으로 평가받고 있다.우리 대학은기계공학과 이강택 교수 연구팀이 단 10분 만에 그린수소의 고성능 전해전지를 완성할 수 있는 초고속 제조 기술을 개발했다고 25일 밝혔다.이번 기술의 핵심인 ‘소결’ 은 전지를 이루는 세라믹 가루를 고온에서 구워 단단히 결합시키는 과정이다. 이 과정이 제대로 이루어져야 전지가 가스를 새지 않고(수소와 산소가 섞이면 폭발 위험), 산소 이온이 손실 없이 이동하며, 전극과 전해질이 단단히 밀착되어 전류가 원활히 흐른다. 즉, 전해전지의 성능과 수명은 얼마나 정밀하게 굽느냐에 달려 있다.연구팀은 마이크로파를 이용해 재료를 내부부터 균일하게 가열하는 ‘체적가열(Volumetric Heating)’기술을 적용해, 기존 수십 시간이 소요되던 소결(sintering) 과정을 30배 이상 단축하는데 성공했다.기존에는 1,400℃ 이상의 고온에서 장시간 처리해야 했는데 이번 연구에서는 마이크로파를 이용해 내부부터 동시에 가열함으로써, 단 10분 만에 1,200℃에서도 안정적인 전해질 형성이 가능함을 입증했다.기존 공정에서는 전지를 만들 때 필수 재료인 세리아(CeO₂) 와 지르코니아(ZrO₂)가 너무 높은 온도에서 서로 섞여버려, 재료의 품질이 떨어지는 문제가 있었다. 하지만 KAIST의 새 기술은 이 두 재료가 서로 섞이지 않는 알맞은 온도에서 단단하게 붙도록 조절해, 흠집 없이 치밀한(빈틈 없는) 전해질층을 만드는 데 성공했다.즉, ‘공정시간’은 하나의 전지를 완성하기 위해 필요한 가열, 유지, 냉각 과정을 모두 포함한 전체 제조 시간을 의미한다. 기존 일반 소결 공정은 약 36.5시간이 소요됐으나, 이번 마이크로웨이브 기술은 70분 만에 완료되어 약 30배 이상 빠른 제조 속도를 보였다.< 그림 1. (a) 마이크로파 기반 초고속 소결 공정 및 기존 소결 공정 모식도 (b) 소결 공정에 따른 세라믹 이중층 전해질 단면 SEM 이미지 > 그 결과, 새롭게 제작된 전지는 750℃에서 분당 23.7mL의 수소를 생산하고, 250시간 이상 안정적으로 작동하며 우수한 내구성을 보였다. 또한 3차원 디지털 트윈 분석(가상 시뮬레이션)을 통해 초고속 가열하는 소결 공정이 전해질(전지 속 재료)의 치밀도를 높이고, 연료극 내 산화니켈(NiO) 입자의 비정상적으로 커지지 않도록 조절함으로써 수소 생산 효율을 향상시킨다는 사실을 규명했다.< 그림 2. 소결 공정에 따른 고체산화물 전기화학전지 3차원 형상 복원 및 접촉면적, 전기화학 활성부위 이미지 > 이강택 교수는 “이번 연구는 고성능 고체산화물 전해전지를 신속하고 효율적으로 제조할 수 있는 새로운 제조 패러다임을 제시한 성과”라며, “기존 공정 대비 에너지 소비와 시간 비용을 획기적으로 절감할 수 있어 상용화 가능성이 매우 높다”고 밝혔다.기계공학과 유형민, 장승수 박사과정생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지인 어드벤스드 머티리얼스(Advanced Materials) (IF: 26.8) 10월 2일 字 온라인판에 게재되었다. 또한 해당 논문은 연구의 파급력을 인정받아 표지논문 (Inside front cover) 으로 선정되었다.※ 논문명: Ultra-Fast Microwave-Assisted Volumetric Heating Engineered Defect-Free Ceria/Zirconia Bilayer Electrolytes for Solid Oxide Electrochemical Cells,DOI: https://doi.org/10.1002/adma.202500183< Advanced Materials 저널 표지 (Inside Front Cover) > 이 성과는 과학기술정보통신부 H2 Next Round 사업, 중견연구자지원사업, 글로벌 기초연구실 지원사업의 지원을 받아 수행했다. 출처 : https://researchnews.kaist.ac.kr/researchnews/html/news/?mode=V&mng_no=53610- KAIST총동문회
- 2025-11-05
동문소식 > 모교 소식 > 연구개발
-
기계공학과
[연구]머리카락 굵기의 200만분의 1 진동까지 본다. 초고속 광계측 기술 개발
<
기계공학과 김정원 교수, 나용진 박사(제1저자) > 우리 대학기계공학과 김정원 교수 연구팀이 초고속 광학 기술을 이용해 원자힘현미경(AFM, atomic force microscope)의 나노 현미경 바늘이 보이는 복잡한 운동을 머리카락 굵기의 약 200만분의 1에 해당하는 30피코미터(pm) 수준의 열잡음 진동부터 머리카락 굵기의 약 1/3에 해당하는 20마이크로미터(μm) 수준의 큰 비선형 진동까지 실시간으로 추적할 수 있는 기술을 개발했다. KAIST기계공학과 나용진 박사(現 삼성전자)가 제1저자로 참여하고 POSTECH 서준호 교수와의 공동연구로 이루어진 이번 연구 결과는 국제학술지 PhotoniX 10월 6일 字에 게재됐다. (논문명: Frequency comb-based time-domain tracking of AFM cantilever dynamics from picometre-scale noise to micron-scale nonlinear motion)최근 나노·마이크로 스케일 기계소자의 복잡한 동역학을 정밀하게 계측하려는 수요가 급격히 늘고 있으나, 기존 기술은 감도, 선형성, 측정 대역폭 사이의 근본적인 한계로 인해 열잡음과 같은 초미세 진동과 큰 진폭의 운동을 동시에 관측하는 데 어려움이 있었다. < 펨토초 광학 기술로 구현한 AFM 탐침의 나노~마이크로 스케일 동역학 실시간 계측 > 연구팀은 펨토초(femtosecond, 10-15초) 레이저 펄스와 전기광학 샘플링기술을 결합해 이러한 한계를 극복했다. 이를 통해 AFM에서 사용되는 나노현미경 바늘(탐침, cantilever)의 약 30피코미터(pm, 10-12미터) 수준의 열잡음 진동부터 20마이크로미터(μm, 10-6미터) 규모의 큰 비선형 운동까지 단일 장비로 계측하는 데 성공했다. 더 나아가 히스테리시스(hysteresis), 모드 결합(mode coupling), 분기(bifurcation), 과도(transient) 운동 같은 기존에는 규명하기 어려웠던 복잡한 동역학 현상을 실시간으로 포착했으며, 탐침을 다중 모드로 구동해 모드 형상(mode shape)을 복원하는 데에도 성공했다.이 기술은 나노기계소자의 정밀 계측 및 최적화를 가능하게 하며, 향후 AFM 바늘의 성능 향상과 고해상도 힘 센싱, 나노소재와 소자 특성 분석의 정밀도 향상에 기여할 수 있을 것으로 기대된다. 더 나아가 비선형 및 과도 동역학의 실시간 규명을 통해 생화학적 센싱, 정밀 계측, 나노역학 연구 전반에 새로운 응용 가능성을 열어줄 것으로 전망된다.김정원 KAIST 교수는 “이번 연구는 기존 기술로는 볼 수 없었던 탐침의 복잡한 동역학을 실시간으로 계측할 수 있는 기반을 마련했다”며 “향후 AFM과 나노센서 기술의 정밀성과 응용 범위를 크게 넓힐 것”이라고 말했다. 서준호 POSTECH 교수는 “본 연구의 광대역 초정밀 광계측 기술은 펄스 기반 광역학계 양자기술 연구에도 기여할 것”이라고 밝혔다.이번 연구는 한국연구재단의 지원을 받아 수행되었다. 출처 : https://researchnews.kaist.ac.kr/researchnews/html/news/?mode=V&mng_no=52930- KAIST총동문회
- 2025-11-05
동문소식 > 모교 소식 > 연구개발
"기계공학과"에 대한 검색결과입니다.
동문소식 (총 141건)
총동문회 소개 (총 1건)
장학재단 소개 (총 1건)
이용약관 (총 1건)
